Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Blood ; 129(19): 2645-2656, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28288979

ABSTRACT

CREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits in B-cell development and can cooperate with Bcl2 overexpression to promote B-cell lymphoma. Through transcriptional and epigenetic profiling of these B cells, we found that Crebbp inactivation was associated with broad transcriptional alterations, but no changes in the patterns of histone acetylation at the proximal regulatory regions of these genes. However, B cells with Crebbp inactivation showed high expression of Myc and patterns of altered histone acetylation that were localized to intragenic regions, enriched for Myc DNA binding motifs, and showed Myc binding. Through the analysis of CREBBP mutations from a large cohort of primary human FL and DLBCL, we show a significant difference in the spectrum of CREBBP mutations in these 2 diseases, with higher frequencies of nonsense/frameshift mutations in DLBCL compared with FL. Together, our data therefore provide important links between Crebbp inactivation and Bcl2 dependence and show a role for Crebbp inactivation in the induction of Myc expression. We suggest this may parallel the role of CREBBP frameshift/nonsense mutations in DLBCL that result in loss of the protein, but may contrast the role of missense mutations in the lysine acetyltransferase domain that are more frequently observed in FL and yield an inactive protein.


Subject(s)
B-Lymphocytes/pathology , CREB-Binding Protein/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Animals , Epigenesis, Genetic , Gene Deletion , Humans , Lymphoma, Follicular/genetics , Mice , Mice, Transgenic , Mutation
2.
Semin Cancer Biol ; 32: 3-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24530939

ABSTRACT

Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cellular Reprogramming/genetics , Neoplasms/genetics , Neoplastic Stem Cells , Oncogenes/genetics , Animals , Cell Differentiation/genetics , Disease Models, Animal , Humans , Mice , Models, Biological , Neoplasms/therapy
3.
Proc Natl Acad Sci U S A ; 109(26): 10534-9, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22689981

ABSTRACT

Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1(+)Lin(-) hematopoietic stem/progenitor cells, which showed NF-κB activation and early lymphoid priming, being selectively skewed toward B-cell differentiation. These cells accumulated in extranodal tissues and gave rise to clonal tumors recapitulating the principal clinical, biological, and molecular genetic features of MALT lymphoma. Deletion of p53 gene accelerated tumor onset and induced transformation of MALT lymphoma to activated B-cell diffuse large-cell lymphoma (ABC-DLBCL). Treatment of MALT1-induced lymphomas with a specific inhibitor of MALT1 proteolytic activity decreased cell viability, indicating that endogenous Malt1 signaling was required for tumor cell survival. Our study shows that human-like lymphomas can be modeled in mice by targeting MALT1 expression to hematopoietic stem/progenitor cells, demonstrating the oncogenic role of MALT1 in lymphomagenesis. Furthermore, this work establishes a molecular link between MALT lymphoma and ABC-DLBCL, and provides mouse models to test MALT1 inhibitors. Finally, our results suggest that hematopoietic stem/progenitor cells may be involved in the pathogenesis of human mature B-cell lymphomas.


Subject(s)
Caspases/genetics , Hematopoietic Stem Cells/metabolism , Lymphoma/pathology , Neoplasm Proteins/genetics , Oncogenes , Animals , Humans , Mice , Mice, Transgenic , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B/metabolism , Transcription, Genetic
4.
Cancer Res ; 77(16): 4365-4377, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28630052

ABSTRACT

ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. As few ETV6-RUNX1 carriers develop precursor B-cell acute lymphocytic leukemia (pB-ALL), the underlying genetic basis for development of full-blown leukemia remains to be identified, but the appearance of leukemia cases in time-space clusters keeps infection as a potential causal factor. Here, we present in vivo genetic evidence mechanistically connecting preleukemic ETV6-RUNX1 expression in hematopoetic stem cells/precursor cells (HSC/PC) and postnatal infections for human-like pB-ALL. In our model, ETV6-RUNX1 conferred a low risk of developing pB-ALL after exposure to common pathogens, corroborating the low incidence observed in humans. Murine preleukemic ETV6-RUNX1 pro/preB cells showed high Rag1/2 expression, known for human ETV6-RUNX1 pB-ALL. Murine and human ETV6-RUNX1 pB-ALL revealed recurrent genomic alterations, with a relevant proportion affecting genes of the lysine demethylase (KDM) family. KDM5C loss of function resulted in increased levels of H3K4me3, which coprecipitated with RAG2 in a human cell line model, laying the molecular basis for recombination activity. We conclude that alterations of KDM family members represent a disease-driving mechanism and an explanation for RAG off-target cleavage observed in humans. Our results explain the genetic basis for clonal evolution of an ETV6-RUNX1 preleukemic clone to pB-ALL after infection exposure and offer the possibility of novel therapeutic approaches. Cancer Res; 77(16); 4365-77. ©2017 AACR.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Histone Demethylases/metabolism , Oncogene Proteins, Fusion/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/microbiology , Animals , Core Binding Factor Alpha 2 Subunit/biosynthesis , Core Binding Factor Alpha 2 Subunit/genetics , Disease Models, Animal , Hematopoietic Stem Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Oncogene Proteins, Fusion/biosynthesis , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
5.
Cell Cycle ; 12(15): 2505-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23839033

ABSTRACT

The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/physiology , Thymus Neoplasms/pathology , Animals , Cell Transformation, Neoplastic/genetics , Fusion Proteins, bcr-abl/genetics , Genetic Predisposition to Disease , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Thymus Neoplasms/genetics , Tumor Burden
6.
Aging (Albany NY) ; 2(12): 908-13, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21164221

ABSTRACT

The incidence, malignancy and treatment resistance of many types of human B-cell leukaemias (B-ALL) are directly related to patient age. A major obstacle to elucidate the contribution of age to the development and evolution of leukaemias is the lack of appropriate mouse models where precise control of the timing of oncogene expression is possible. Here we present proof-of-principle experiments showing how a conditional transgenic mouse model of BCR-ABLp190-driven B-ALL offers the opportunity to test the hypothesis that the age of the leukemic cells-of-origin of B-ALL influences B-ALL malignancy. B-ALLs generated from 12- and 20-month-old progenitors gave rise to a more invasive B-ALL than the one developed from 4-month old precursors. This was evidenced by survival analysis revealing the increased malignancy of B-ALLs generated from 20 or 12-month-old transformed progenitors compared with the 4-month equivalents (median survival of 88 days versus 50.5 and 33 days, respectively). Our study shows that the age of target cells at the time of transformation affects B-ALL malignancy.


Subject(s)
Cellular Senescence , Leukemia, B-Cell/pathology , Leukemia, Experimental/pathology , Neoplastic Stem Cells/pathology , Age Factors , Animals , Bone Marrow Transplantation , Cell Line , Cell Survival , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Genes, abl , Humans , Leukemia, B-Cell/genetics , Leukemia, B-Cell/metabolism , Leukemia, Experimental/genetics , Leukemia, Experimental/metabolism , Mice , Mice, Transgenic , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL