Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Curr Biol ; 33(21): 4549-4556.e3, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37757830

ABSTRACT

Temperature profoundly impacts all living creatures. In spite of the thermodynamic constraints on biology, some animals have evolved to live and move in extremely cold environments. Here, we investigate behavioral mechanisms of cold tolerance in the snow fly (Chionea spp.), a flightless crane fly that is active throughout the winter in boreal and alpine environments of the northern hemisphere. Using thermal imaging, we show that adult snow flies maintain the ability to walk down to an average body temperature of -7°C. At this supercooling limit, ice crystallization occurs within the snow fly's hemolymph and rapidly spreads throughout the body, resulting in death. However, we discovered that snow flies frequently survive freezing by rapidly amputating legs before ice crystallization can spread to their vital organs. Self-amputation of freezing limbs is a last-ditch tactic to prolong survival in frigid conditions that few animals can endure. Understanding the extreme physiology and behavior of snow insects holds particular significance at this moment when their alpine habitats are rapidly changing due to anthropogenic climate change. VIDEO ABSTRACT.


Subject(s)
Diptera , Animals , Freezing , Temperature , Ice , Snow , Cold Temperature , Seasons
2.
Cell Rep ; 36(13): 109730, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34592148

ABSTRACT

Quantifying movement is critical for understanding animal behavior. Advances in computer vision now enable markerless tracking from 2D video, but most animals move in 3D. Here, we introduce Anipose, an open-source toolkit for robust markerless 3D pose estimation. Anipose is built on the 2D tracking method DeepLabCut, so users can expand their existing experimental setups to obtain accurate 3D tracking. It consists of four components: (1) a 3D calibration module, (2) filters to resolve 2D tracking errors, (3) a triangulation module that integrates temporal and spatial regularization, and (4) a pipeline to structure processing of large numbers of videos. We evaluate Anipose on a calibration board as well as mice, flies, and humans. By analyzing 3D leg kinematics tracked with Anipose, we identify a key role for joint rotation in motor control of fly walking. To help users get started with 3D tracking, we provide tutorials and documentation at http://anipose.org/.


Subject(s)
Behavior, Animal/physiology , Imaging, Three-Dimensional , Movement/physiology , Walking/physiology , Animals , Biomechanical Phenomena/physiology , Deep Learning , Humans , Imaging, Three-Dimensional/methods , Mice
SELECTION OF CITATIONS
SEARCH DETAIL