Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Cell ; 147(2): 382-95, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22000016

ABSTRACT

We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF(V600E) to promote melanomagenesis.


Subject(s)
Homeodomain Proteins/genetics , Melanoma/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins B-raf/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , 3' Untranslated Regions , Animals , Disease Models, Animal , Homeodomain Proteins/metabolism , Humans , Mice , MicroRNAs/metabolism , Mutagenesis, Insertional , Repressor Proteins/metabolism , Zinc Finger E-box Binding Homeobox 2
2.
J Immunol ; 208(1): 169-180, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34853077

ABSTRACT

Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-ß, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-ß. Truncating the intracellular signaling domain from TGF-ß receptor (TGFßR) II produces a dominant-negative receptor (dnTGFßRII) that dimerizes with endogenous TGFßRI to form a receptor that can bind TGF-ß but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-ß inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFßRII (e.g., GSK3845097). TGF-ß isoforms and a panel of TGF-ß-associated genes are overexpressed in a range of cancer indications in which NY-ESO-1 is commonly expressed, particularly in synovial sarcoma. As an example, immunohistochemistry/RNAscope identified TGF-ß-positive cells close to T cells in tumor nests and stroma, which had low frequencies of cells expressing IFN-γ in a non-small cell lung cancer setting. Coexpression of dnTGFßRII may therefore improve the efficacy of TCR-transduced T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Squamous Cell/therapy , Hematologic Neoplasms/therapy , Immunotherapy, Adoptive/methods , Melanoma/therapy , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , Sarcoma, Synovial/therapy , Transforming Growth Factor beta/metabolism , Antigens, Neoplasm/immunology , Carcinoma, Squamous Cell/immunology , Cell Line, Tumor , Genetic Engineering , HLA-A2 Antigen/metabolism , Hematologic Neoplasms/immunology , Humans , Immune Tolerance , Melanoma/immunology , Membrane Proteins/immunology , Neoplasm Proteins/immunology , Peptide Fragments/immunology , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Sarcoma, Synovial/immunology , T-Cell Antigen Receptor Specificity , Tumor Microenvironment
3.
Nat Immunol ; 10(4): 437-43, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19270711

ABSTRACT

The innate immune system is like a double-edged sword: it is absolutely required for host defense against infection, but when uncontrolled, it can trigger a plethora of inflammatory diseases. Here we use systems-biology approaches to predict and confirm the existence of a gene-regulatory network involving dynamic interaction among the transcription factors NF-kappaB, C/EBPdelta and ATF3 that controls inflammatory responses. We mathematically modeled transcriptional regulation of the genes encoding interleukin 6 and C/EBPdelta and experimentally confirmed the prediction that the combination of an initiator (NF-kappaB), an amplifier (C/EBPdelta) and an attenuator (ATF3) forms a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals. Our results suggest a mechanism that enables the innate immune system to detect the duration of infection and to respond appropriately.


Subject(s)
Activating Transcription Factor 3/immunology , Bone Marrow Cells/immunology , CCAAT-Enhancer-Binding Protein-delta/immunology , Macrophages/immunology , Systems Biology , Toll-Like Receptor 4/immunology , Activating Transcription Factor 3/physiology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/physiology , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/physiology , Cells, Cultured , Escherichia coli Infections/immunology , Gene Regulatory Networks , Immunity, Innate , Interleukin-6/immunology , Interleukin-6/physiology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Genetic , NF-kappa B/immunology , NF-kappa B/physiology , Toll-Like Receptor 4/physiology
4.
Nature ; 517(7535): 489-92, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25363767

ABSTRACT

Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model. By contrast, the Kras(LA2) tumours exhibited a significantly higher level of aneuploidy and copy number alterations compared with the carcinogen-induced tumours, suggesting that carcinogen-induced and genetically engineered models lead to tumour development through different routes. The wild-type allele of Kras has been shown to act as a tumour suppressor in mouse models of non-small-cell lung cancer. We demonstrate that urethane-induced tumours from wild-type mice carry mostly (94%) Kras Q61R mutations, whereas those from Kras heterozygous animals carry mostly (92%) Kras Q61L mutations, indicating a major role for germline Kras status in mutation selection during initiation. The exome-wide mutation spectra in carcinogen-induced tumours overwhelmingly display signatures of the initiating carcinogen, while adenocarcinomas acquire additional C > T mutations at CpG sites. These data provide a basis for understanding results from human tumour genome sequencing, which has identified two broad categories of tumours based on the relative frequency of single-nucleotide variations and copy number alterations, and underline the importance of carcinogen models for understanding the complex mutation spectra seen in human cancers.


Subject(s)
Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Genes, ras/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Mutation/genetics , Oncogene Protein p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/chemically induced , Adenocarcinoma/genetics , Animals , Carcinogens/toxicity , Carcinoma, Non-Small-Cell Lung/chemically induced , Carcinoma, Non-Small-Cell Lung/genetics , DNA Copy Number Variations/genetics , Disease Progression , Female , Genomic Instability/genetics , Germ-Line Mutation/genetics , Humans , Male , Methylnitrosourea/toxicity , Mice , Models, Genetic , Point Mutation/genetics , Urethane/toxicity
5.
Proc Natl Acad Sci U S A ; 113(14): E2057-65, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27006499

ABSTRACT

Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-ß, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.


Subject(s)
DNA Transposable Elements/genetics , Mutagenesis , Smad4 Protein/genetics , Stomach Neoplasms/genetics , Transposases/genetics , Adherens Junctions/genetics , Animals , Chromatin/metabolism , Humans , Mice , Mice, Knockout , Oncogenes , Stomach Neoplasms/pathology
6.
Proc Natl Acad Sci U S A ; 113(48): E7749-E7758, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849608

ABSTRACT

Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1 Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC.


Subject(s)
Adenocarcinoma/genetics , DNA Transposable Elements , Mammary Neoplasms, Experimental/genetics , PTEN Phosphohydrolase/genetics , Adenocarcinoma/secondary , Animals , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Progression , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Genes, Tumor Suppressor , Humans , Kaplan-Meier Estimate , Lung Neoplasms , Mammary Neoplasms, Experimental/pathology , Mice, Transgenic , Mutagenesis , Mutation, Missense , Proportional Hazards Models , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins , Transcription Factors/genetics , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology
7.
Proc Natl Acad Sci U S A ; 113(29): 8290-5, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27357679

ABSTRACT

Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition.


Subject(s)
Fatty Acid Synthase, Type I/metabolism , PPAR gamma/metabolism , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Humans , Lipid Metabolism , Male , Mice , Middle Aged , PPAR gamma/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Transposases
8.
Breast Cancer Res Treat ; 170(3): 573-581, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29700676

ABSTRACT

BACKGROUND: Bio-banked formalin-fixed paraffin-embedded (FFPE) tissues provide an excellent opportunity for translational genomic research. Historically matched blood has not always been collected as a source of germline DNA. This project aimed to establish if normal FFPE breast tissue could be used as an alternative to blood. METHODS: Exome sequencing was carried out on matched tumour tissue, normal breast tissue and blood on five patients in the START trial. Retrieved samples had been archived at different centres for at least 13 years. Following tissue macro-dissection and DNA extraction, targeted exome capture was performed using SureSelect Human All Exome v5 reagents (Agilent). Illumina paired-end libraries were prepared from the captured target regions and sequenced on a HiSeq2500 (Illumina) acquiring 2 × 75 bp reads. Somatic variants were called using the MuTect software analysis tool and copy number abnormalities (CNA) were identified using CNVkit. Targeted sequencing and droplet digital PCR were used to validate somatic variants and CNA, respectively. RESULTS: Overlap of somatic variants and CNA called on tumour versus blood and tumour versus normal breast tissue was good. Agreement in somatic variant calling ranged from 76.9 to 93.6%. Variants with an allele frequency lower than 10% were more difficult to validate irrespective of the type of germline DNA used. Pearson's correlation coefficients for paired comparisons of CNA using blood or normal tissue as reference ranged from 0.70 to 0.94. CONCLUSIONS: There is good correlation between the somatic mutations and CNA called using archived blood or normal breast tissue as germline reference material.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA, Neoplasm , Genetic Predisposition to Disease , Germ Cells/metabolism , Breast Neoplasms/therapy , Combined Modality Therapy , DNA Copy Number Variations , Exome , Female , Gene Expression Profiling , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results , Treatment Outcome
9.
Nature ; 490(7420): 421-5, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-22982991

ABSTRACT

Antiviral responses must be tightly regulated to defend rapidly against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses and their transcription is regulated by a variety of transcription factors; principal among these is the family of interferon regulatory factors (IRFs). The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3-IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.


Subject(s)
Forkhead Transcription Factors/metabolism , Gene Expression Regulation/immunology , Inflammation/immunology , Inflammation/pathology , Interferon Regulatory Factor-7/metabolism , Vesiculovirus/immunology , Animals , Female , Forkhead Box Protein O3 , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Gene Deletion , Inflammation/genetics , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Interferon Type I/immunology , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Reproducibility of Results
10.
Nature ; 486(7402): 266-70, 2012 Apr 29.
Article in English | MEDLINE | ID: mdl-22699621

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.


Subject(s)
Carcinoma, Pancreatic Ductal/enzymology , Pancreatic Neoplasms/enzymology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Animals , Anoikis/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Models, Animal , Endopeptidases , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , U937 Cells
11.
Proc Natl Acad Sci U S A ; 112(6): E536-45, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25624498

ABSTRACT

BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes.


Subject(s)
Drug Resistance, Neoplasm/physiology , Melanoma/drug therapy , Oncogene Protein p21(ras)/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Animals, Genetically Modified , Blotting, Southern , Blotting, Western , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Embryonic Stem Cells/metabolism , Exome/genetics , Genetic Association Studies , Hepatocyte Growth Factor/metabolism , Humans , Immunohistochemistry , Indoles/pharmacology , Melanoma/metabolism , Mice , Mutagenesis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Signal Transduction/genetics , Sulfonamides/pharmacology , Transposases/metabolism , bcl-Associated Death Protein/metabolism
12.
Blood ; 125(23): 3609-17, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25855603

ABSTRACT

Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL.


Subject(s)
Gene Deletion , Neoplasms, Experimental/metabolism , PAX5 Transcription Factor/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Mice , Mice, Mutant Strains , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Suppressor Proteins/genetics
13.
J Pathol ; 238(1): 98-108, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26414517

ABSTRACT

Familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) are inherited disorders associated with multiple colorectal adenomas that lead to a very high risk of colorectal cancer. The somatic mutations that drive adenoma development in these conditions have not been investigated comprehensively. In this study we performed analysis of paired colorectal adenoma and normal tissue DNA from individuals with FAP or MAP, sequencing 14 adenoma whole exomes (eight MAP, six FAP), 55 adenoma targeted exomes (33 MAP, 22 FAP) and germline DNA from each patient, and a further 63 adenomas by capillary sequencing (41 FAP, 22 MAP). With these data we examined the profile of mutated genes, the mutational signatures and the somatic mutation rates, observing significant diversity in the constellations of mutated driver genes in different adenomas, and loss-of-function mutations in WTX (9%; p < 9.99e-06), a gene implicated in regulation of the WNT pathway and p53 acetylation. These data extend our understanding of the early events in colorectal tumourigenesis in the polyposis syndromes.


Subject(s)
Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Intestinal Polyposis/genetics , Intestinal Polyposis/pathology , DNA Glycosylases/genetics , DNA Mutational Analysis , Humans , Neoplastic Syndromes, Hereditary/genetics , Transcriptome
14.
Nature ; 469(7331): 539-42, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21248752

ABSTRACT

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Subject(s)
Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Mice , Pancreatic Neoplasms/genetics
15.
PLoS Genet ; 10(4): e1004250, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24721906

ABSTRACT

The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of ~ 120,000 to ~ 180,000 unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed ~ 80 (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%-33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes.


Subject(s)
Chromatin/genetics , DNA Transposable Elements/genetics , Retroviridae/genetics , Animals , CpG Islands/genetics , Genome/genetics , Mice , Mutagenesis, Insertional/methods , Oncogenes/genetics
16.
PLoS Genet ; 10(2): e1004167, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24586197

ABSTRACT

Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a 'progression network' that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.


Subject(s)
Genes, myb/genetics , Lymphoma/genetics , Moloney murine leukemia virus/genetics , Mutagenesis, Insertional/genetics , Tumor Suppressor Protein p53/genetics , Animals , Carcinogenesis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Germ Cells , High-Throughput Nucleotide Sequencing , Humans , Ikaros Transcription Factor/biosynthesis , Ikaros Transcription Factor/genetics , Lymphoma/pathology , Lymphoma/virology , Mice
17.
EMBO J ; 31(11): 2486-97, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22510880

ABSTRACT

Genetic screens in simple model organisms have identified many of the key components of the conserved signal transduction pathways that are oncogenic when misregulated. Here, we identify H37N21.1 as a gene that regulates vulval induction in let-60(n1046gf), a strain with a gain-of-function mutation in the Caenorhabditis elegans Ras orthologue, and show that somatic deletion of Nrbp1, the mouse orthologue of this gene, results in an intestinal progenitor cell phenotype that leads to profound changes in the proliferation and differentiation of all intestinal cell lineages. We show that Nrbp1 interacts with key components of the ubiquitination machinery and that loss of Nrbp1 in the intestine results in the accumulation of Sall4, a key mediator of stem cell fate, and of Tsc22d2. We also reveal that somatic loss of Nrbp1 results in tumourigenesis, with haematological and intestinal tumours predominating, and that nuclear receptor binding protein 1 (NRBP1) is downregulated in a range of human tumours, where low expression correlates with a poor prognosis. Thus NRBP1 is a conserved regulator of cell fate, that plays an important role in tumour suppression.


Subject(s)
Homeostasis/physiology , Intestines/physiology , Intracellular Signaling Peptides and Proteins/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Stem Cells/physiology , Tumor Suppressor Proteins/genetics , Vesicular Transport Proteins/physiology , Animals , Carrier Proteins/analysis , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA-Binding Proteins/analysis , Female , Gene Deletion , Humans , Intestines/cytology , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oxidoreductases , Prognosis , Receptors, Cytoplasmic and Nuclear/genetics , Stem Cells/cytology , Transcription Factors/analysis , Tumor Suppressor Proteins/physiology , Ubiquitination/genetics , Ubiquitination/physiology , Vesicular Transport Proteins/genetics
18.
Proc Natl Acad Sci U S A ; 110(46): E4325-34, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24167280

ABSTRACT

The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1(lacZ/+)), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1(lacZ/+) controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups.


Subject(s)
Gene Regulatory Networks/genetics , Hedgehog Proteins/metabolism , Medulloblastoma/genetics , NFI Transcription Factors/genetics , Signal Transduction/genetics , Animals , Apoptosis/genetics , Chromosome Mapping , Computational Biology , DNA Primers/genetics , DNA Transposable Elements/genetics , Hedgehog Proteins/genetics , Humans , Mice , Mice, Transgenic , Mutagenesis, Insertional/methods , Patched Receptors , Patched-1 Receptor , Polymerase Chain Reaction , Receptors, Cell Surface/genetics , Sequence Analysis, DNA , Transposases/genetics
19.
BMC Cancer ; 15: 585, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26269126

ABSTRACT

BACKGROUND: B-cell precursor acute lymphoblastic leukemia (B-ALL) is amongst the leading causes of childhood cancer-related mortality. Its most common chromosomal aberration is the ETV6-RUNX1 fusion gene, with ~25% of ETV6-RUNX1 patients also carrying PAX5 alterations. METHODS: We have recreated this mutation background by inter-crossing Etv6-RUNX1 (Etv6 (RUNX1-SB)) and Pax5(+/-) mice and performed an in vivo analysis to find driver genes using Sleeping Beauty transposon-mediated mutagenesis and also exome sequencing. RESULTS: Combination of Etv6-RUNX1 and Pax5(+/-) alleles generated a transplantable B220 + CD19+ B-ALL with a significant disease incidence. RNA-seq analysis showed a gene expression pattern consistent with arrest at the pre-B stage. Analysis of the transposon common insertion sites identified genes involved in B-cell development (Zfp423) and the JAK/STAT signaling pathway (Jak1, Stat5 and Il2rb), while exome sequencing revealed somatic hotspot mutations in Jak1 and Jak3 at residues analogous to those mutated in human leukemias, and also mutation of Trp53. CONCLUSIONS: Powerful synergies exists in our model suggesting STAT pathway activation and mutation of Trp53 are potent drivers of B-ALL in the context of Etv6-RUNX1;Pax5(+/-).


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Animals , Disease Models, Animal , Janus Kinases/genetics , Mice , Mutagenesis , PAX5 Transcription Factor/genetics , ETS Translocation Variant 6 Protein
20.
Proc Natl Acad Sci U S A ; 109(44): E2998-3007, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23045694

ABSTRACT

Neural stem cells (NSCs) are considered to be the cell of origin of glioblastoma multiforme (GBM). However, the genetic alterations that transform NSCs into glioma-initiating cells remain elusive. Using a unique transposon mutagenesis strategy that mutagenizes NSCs in culture, followed by additional rounds of mutagenesis to generate tumors in vivo, we have identified genes and signaling pathways that can transform NSCs into glioma-initiating cells. Mobilization of Sleeping Beauty transposons in NSCs induced the immortalization of astroglial-like cells, which were then able to generate tumors with characteristics of the mesenchymal subtype of GBM on transplantation, consistent with a potential astroglial origin for mesenchymal GBM. Sequence analysis of transposon insertion sites from tumors and immortalized cells identified more than 200 frequently mutated genes, including human GBM-associated genes, such as Met and Nf1, and made it possible to discriminate between genes that function during astroglial immortalization vs. later stages of tumor development. We also functionally validated five GBM candidate genes using a previously undescribed high-throughput method. Finally, we show that even clonally related tumors derived from the same immortalized line have acquired distinct combinations of genetic alterations during tumor development, suggesting that tumor formation in this model system involves competition among genetically variant cells, which is similar to the Darwinian evolutionary processes now thought to generate many human cancers. This mutagenesis strategy is faster and simpler than conventional transposon screens and can potentially be applied to any tissue stem/progenitor cells that can be grown and differentiated in vitro.


Subject(s)
Brain Neoplasms/pathology , DNA Transposable Elements , Glioblastoma/pathology , Mutagenesis , Neural Stem Cells/cytology , Animals , Cell Transformation, Neoplastic , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL