Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Alzheimers Dement ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234956

ABSTRACT

INTRODUCTION: Neuroanatomical normative modeling captures individual variability in Alzheimer's disease (AD). Here we used normative modeling to track individuals' disease progression in people with mild cognitive impairment (MCI) and patients with AD. METHODS: Cortical and subcortical normative models were generated using healthy controls (n ≈ 58k). These models were used to calculate regional z scores in 3233 T1-weighted magnetic resonance imaging time-series scans from 1181 participants. Regions with z scores < -1.96 were classified as outliers mapped on the brain and summarized by total outlier count (tOC). RESULTS: tOC increased in AD and in people with MCI who converted to AD and also correlated with multiple non-imaging markers. Moreover, a higher annual rate of change in tOC increased the risk of progression from MCI to AD. Brain outlier maps identified the hippocampus as having the highest rate of change. DISCUSSION: Individual patients' atrophy rates can be tracked by using regional outlier maps and tOC. HIGHLIGHTS: Neuroanatomical normative modeling was applied to serial Alzheimer's disease (AD) magnetic resonance imaging (MRI) data for the first time. Deviation from the norm (outliers) of cortical thickness or brain volume was computed in 3233 scans. The number of brain-structure outliers increased over time in people with AD. Patterns of change in outliers varied markedly between individual patients with AD. People with mild cognitive impairment whose outliers increased over time had a higher risk of progression from AD.

2.
Psychol Med ; 52(14): 3051-3061, 2022 10.
Article in English | MEDLINE | ID: mdl-33441214

ABSTRACT

BACKGROUND: Structural models of psychopathology consistently identify internalizing (INT) and externalizing (EXT) specific factors as well as a superordinate factor that captures their shared variance, the p factor. Questions remain, however, about the meaning of these data-driven dimensions and the interpretability and distinguishability of the larger nomological networks in which they are embedded. METHODS: The sample consisted of 10 645 youth aged 9-10 years participating in the multisite Adolescent Brain and Cognitive Development (ABCD) Study. p, INT, and EXT were modeled using the parent-rated Child Behavior Checklist (CBCL). Patterns of associations were examined with variables drawn from diverse domains including demographics, psychopathology, temperament, family history of substance use and psychopathology, school and family environment, and cognitive ability, using instruments based on youth-, parent-, and teacher-report, and behavioral task performance. RESULTS: p exhibited a broad pattern of statistically significant associations with risk variables across all domains assessed, including temperament, neurocognition, and social adversity. The specific factors exhibited more domain-specific patterns of associations, with INT exhibiting greater fear/distress and EXT exhibiting greater impulsivity. CONCLUSIONS: In this largest study of hierarchical models of psychopathology to date, we found that p, INT, and EXT exhibit well-differentiated nomological networks that are interpretable in terms of neurocognition, impulsivity, fear/distress, and social adversity. These networks were, in contrast, obscured when relying on the a priori Internalizing and Externalizing dimensions of the CBCL scales. Our findings add to the evidence for the validity of p, INT, and EXT as theoretically and empirically meaningful broad psychopathology liabilities.


Subject(s)
Mental Disorders , Psychopathology , Child , Humans , Adolescent , Impulsive Behavior , Fear , Temperament , Mental Disorders/psychology
3.
Cereb Cortex ; 31(6): 2822-2833, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33447841

ABSTRACT

Recent studies found low test-retest reliability in functional magnetic resonance imaging (fMRI), raising serious concerns among researchers, but these studies mostly focused on the reliability of individual fMRI features (e.g., individual connections in resting state connectivity maps). Meanwhile, neuroimaging researchers increasingly employ multivariate predictive models that aggregate information across a large number of features to predict outcomes of interest, but the test-retest reliability of predicted outcomes of these models has not previously been systematically studied. Here we apply 10 predictive modeling methods to resting state connectivity maps from the Human Connectome Project dataset to predict 61 outcome variables. Compared with mean reliability of individual resting state connections, we find mean reliability of the predicted outcomes of predictive models is substantially higher for all 10 modeling methods assessed. Moreover, improvement was consistently observed across all scanning and processing choices (i.e., scan lengths, censoring thresholds, volume- vs. surface-based processing). For the most reliable methods, the reliability of predicted outcomes was mostly, though not exclusively, in the "good" range (above 0.60). Finally, we identified three mechanisms that help to explain why predicted outcomes of predictive models have higher reliability than individual imaging features. We conclude that researchers can potentially achieve higher test-retest reliability by making greater use of predictive models.


Subject(s)
Brain/diagnostic imaging , Connectome/standards , Magnetic Resonance Imaging/standards , Models, Theoretical , Nerve Net/diagnostic imaging , Rest , Brain/physiology , Connectome/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Reproducibility of Results , Rest/physiology
4.
Mol Psychiatry ; 25(12): 3413-3421, 2020 12.
Article in English | MEDLINE | ID: mdl-31427753

ABSTRACT

Difficulties with higher-order cognitive functions in youth are a potentially important vulnerability factor for the emergence of problematic behaviors and a range of psychopathologies. This study examined 2013 9-10 year olds in the first data release from the Adolescent Brain Cognitive Development 21-site consortium study in order to identify resting state functional connectivity patterns that predict individual-differences in three domains of higher-order cognitive functions: General Ability, Speed/Flexibility, and Learning/Memory. For General Ability scores in particular, we observed consistent cross-site generalizability, with statistically significant predictions in 14 out of 15 held-out sites. These results survived several tests for robustness including replication in split-half analysis and in a low head motion subsample. We additionally found that connectivity patterns involving task control networks and default mode network were prominently implicated in predicting differences in General Ability across participants. These findings demonstrate that resting state connectivity can be leveraged to produce generalizable markers of neurocognitive functioning. Additionally, they highlight the importance of task control-default mode network interconnections as a major locus of individual differences in cognitive functioning in early adolescence.


Subject(s)
Brain , Magnetic Resonance Imaging , Adolescent , Brain/diagnostic imaging , Brain Mapping , Cognition , Humans , Neural Pathways/diagnostic imaging , Rest
5.
Hum Brain Mapp ; 41(12): 3186-3197, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32364670

ABSTRACT

General cognitive ability (GCA) refers to a trait-like ability that contributes to performance across diverse cognitive tasks. Identifying brain-based markers of GCA has been a longstanding goal of cognitive and clinical neuroscience. Recently, predictive modeling methods have emerged that build whole-brain, distributed neural signatures for phenotypes of interest. In this study, we employ a predictive modeling approach to predict GCA based on fMRI task activation patterns during the N-back working memory task as well as six other tasks in the Human Connectome Project dataset (n = 967), encompassing 15 task contrasts in total. We found tasks are a highly effective basis for prediction of GCA: The 2-back versus 0-back contrast achieved a 0.50 correlation with GCA scores in 10-fold cross-validation, and 13 out of 15 task contrasts afforded statistically significant prediction of GCA. Additionally, we found that task contrasts that produce greater frontoparietal activation and default mode network deactivation-a brain activation pattern associated with executive processing and higher cognitive demand-are more effective in the prediction of GCA. These results suggest a picture analogous to treadmill testing for cardiac function: Placing the brain in a more cognitively demanding task state significantly improves brain-based prediction of GCA.


Subject(s)
Aptitude/physiology , Cognition/physiology , Default Mode Network/physiology , Executive Function/physiology , Functional Neuroimaging/methods , Intelligence/physiology , Memory, Short-Term/physiology , Nerve Net/physiology , Psychomotor Performance/physiology , Adult , Connectome , Default Mode Network/diagnostic imaging , Humans , Magnetic Resonance Imaging , Models, Theoretical , Nerve Net/diagnostic imaging , Neuropsychological Tests
6.
Commun Biol ; 7(1): 745, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898062

ABSTRACT

The inequitable distribution of economic resources and exposure to adversity between racial groups contributes to mental health disparities within the United States. Consideration of the potential neurodevelopmental consequences, however, has been limited particularly for neurocircuitry known to regulate the emotional response to threat. Characterizing the consequences of inequity on threat neurocircuitry is critical for robust and generalizable neurobiological models of psychiatric illness. Here we use data from the Adolescent Brain and Cognitive Development Study 4.0 release to investigate the contributions of individual and neighborhood-level economic resources and exposure to discrimination. We investigate the potential appearance of race-related differences using both standard methods and through population-level normative modeling. We show that, in a sample of white and Black adolescents, racial inequities in socioeconomic factors largely contribute to the appearance of race-related differences in cortical thickness of threat neurocircuitry. The race-related differences are preserved through the use of population-level models and such models also preserve associations between cortical thickness and specific socioeconomic factors. The present findings highlight that such socioeconomic inequities largely underlie race-related differences in brain morphology. The present findings provide important new insight for the generation of generalizable neurobiological models of psychiatric illness.


Subject(s)
Cerebral Cortex , Mental Disorders , Socioeconomic Factors , Adolescent , Female , Humans , Male , Black or African American/psychology , Cerebral Cortex/anatomy & histology , Cerebral Cortex/growth & development , Cerebral Cortex/physiology , United States , White People/psychology , Social Determinants of Health/ethnology , Health Inequities , Mental Disorders/ethnology , Mental Disorders/etiology , Mental Disorders/physiopathology , Mental Disorders/psychology
7.
Article in English | MEDLINE | ID: mdl-39117275

ABSTRACT

BACKGROUND: Individuals with schizophrenia (SZ) experience impairments in social cognition that contribute to poor functional outcomes. However, mechanisms of social cognitive dysfunction in SZ remain poorly understood, which impedes the design of novel interventions to improve outcomes. This pre-registered project (https://doi.org/10.17605/OSF.IO/JH5FC) examines the representation of social cognition in the brain's functional architecture across early and chronic SZ. METHODS: The study contains two parts: a confirmatory and an exploratory portion. In the confirmatory portion, we identified resting-state connectivity disruptions evident in early and chronic SZ. We performed a connectivity analysis using regions associated with social cognitive dysfunction in early and chronic SZ to test whether aberrant connectivity observed in chronic SZ (N=47; HC=52) was also present in early SZ (N=71, HC=47). In the exploratory portion, we assessed the out-of-sample generalizability and precision of predictive models of social cognition. We used machine learning to predict social cognition and established generalizability with out-of-sample testing and confound control. RESULTS: Results reveal decreases between left inferior frontal gyrus and intraparietal sulcus in early and chronic SZ, which are significantly associated with social and general cognition and global functioning in chronic SZ and with general cognition and global functioning in early SZ. Predictive modeling reveals the importance of out-of-sample evaluation and confound control. CONCLUSION: This work provides insights into the functional architecture in early and chronic SZ and suggests that IFG-IPS connectivity could be a prognostic biomarker of social impairments and a target for future interventions (e.g. neuromodulation) focused on improved social functioning.

8.
medRxiv ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39228736

ABSTRACT

Importance: While there is a general consensus that functional connectome pathology is a key mechanism underlying psychosis spectrum disorders, the literature is plagued with inconsistencies and translation into clinical practice is non-existent. This is perhaps because group-level findings may not be accurate reflections of pathology at the individual patient level. Objective: To characterize inter-individual heterogeneity in functional networks and investigate if normative values can be leveraged to identify biologically less heterogeneous subgroups of patients. Design Setting and Participants: We used data collected in a case-control study conducted at the University of Alabama at Birmingham (UAB). We recruited antipsychotic medication-naïve first-episode psychosis patients from UAB outpatient, inpatient, and emergency room settings. Main Outcomes and Measures: Individual-level patterns of deviations from a normative reference range in resting-state functional networks using the Yeo-17 atlas for parcellations. Results: Statistical analyses included 108 medication-naïve first-episode psychosis patients. We found that there is a high level of inter-individual heterogeneity in resting-state network connectivity deviations from the normative reference range. Interestingly 48% of patients did not have any functional connectivity deviations, and no more than 11.1% of patients shared functional deviations between the same regions of interest. In a post hoc analysis, we grouped patients based on deviations into four theoretically possible groups. We discovered that all four groups do exist in our experimental data and showed that subgroups based on deviation profiles were significantly less heterogeneous compared to the overall group (positive deviation group: z= -2.88, p = 0.002; negative deviation group: z= -3.36, p<0.001). Conclusions and Relevance: Our findings experimentally demonstrate that there is a high level of inter-individual heterogeneity in resting-state network pathology in first-episode psychosis patients which support the idea that group-level findings are not accurate reflections of pathology at the individual level. We also demonstrated that normative functional connectivity deviations may have utility for identifying biologically less heterogeneous subgroups of patients, even though they are not distinguishable clinically. Our findings constitute a significant step towards making precision psychiatry a reality, where patients are selected for treatments based on their individual biological characteristics. KEY POINTS: Question: How heterogeneous is individual-level resting-state functional network pathology in patients suffering from a first psychotic episode? Can normative reference values in functional network connectivity be leveraged to identify biologically more homogenous subgroups of patients?Findings: We report that functional network pathology is highly heterogeneous, with no more than 11% of patients sharing functional deviations between the same regions of interest.Meaning: Normative modeling is a tool that can map individual neurobiological differences and enables the classification of a clinically heterogenous patient group into subgroups that are neurobiologically less heterogenous.

9.
Schizophr Bull ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970378

ABSTRACT

BACKGROUND: Clinical forecasting models have potential to optimize treatment and improve outcomes in psychosis, but predicting long-term outcomes is challenging and long-term follow-up data are scarce. In this 10-year longitudinal study, we aimed to characterize the temporal evolution of cortical correlates of psychosis and their associations with symptoms. DESIGN: Structural magnetic resonance imaging (MRI) from people with first-episode psychosis and controls (n = 79 and 218) were obtained at enrollment, after 12 months (n = 67 and 197), and 10 years (n = 23 and 77), within the Thematically Organized Psychosis (TOP) study. Normative models for cortical thickness estimated on public MRI datasets (n = 42 983) were applied to TOP data to obtain deviation scores for each region and timepoint. Positive and Negative Syndrome Scale (PANSS) scores were acquired at each timepoint along with registry data. Linear mixed effects models assessed effects of diagnosis, time, and their interactions on cortical deviations plus associations with symptoms. RESULTS: LMEs revealed conditional main effects of diagnosis and time × diagnosis interactions in a distributed cortical network, where negative deviations in patients attenuate over time. In patients, symptoms also attenuate over time. LMEs revealed effects of anterior cingulate on PANSS total, and insular and orbitofrontal regions on PANSS negative scores. CONCLUSIONS: This long-term longitudinal study revealed a distributed pattern of cortical differences which attenuated over time together with a reduction in symptoms. These findings are not in line with a simple neurodegenerative account of schizophrenia, and deviations from normative models offer a promising avenue to develop biomarkers to track clinical trajectories over time.

10.
Wellcome Open Res ; 8: 326, 2023.
Article in English | MEDLINE | ID: mdl-37663797

ABSTRACT

Background: The neurobiology of mental disorders remains poorly understood despite substantial scientific efforts, due to large clinical heterogeneity and to a lack of tools suitable to map individual variability. Normative modeling is one recently successful framework that can address these problems by comparing individuals to a reference population. The methodological underpinnings of normative modelling are, however, relatively complex and computationally expensive. Our research group has developed the python-based normative modelling package Predictive Clinical Neuroscience toolkit (PCNtoolkit) which provides access to many validated algorithms for normative modelling. PCNtoolkit has since proven to be a strong foundation for large scale normative modelling, but still requires significant computation power, time and technical expertise to develop. Methods: To address these problems, we introduce PCNportal. PCNportal is an online platform integrated with PCNtoolkit that offers access to pre-trained research-grade normative models estimated on tens of thousands of participants, without the need for computation power or programming abilities. PCNportal is an easy-to-use web interface that is highly scalable to large user bases as necessary. Finally, we demonstrate how the resulting normalized deviation scores can be used in a clinical application through a schizophrenia classification task applied to cortical thickness and volumetric data from the longitudinal Northwestern University Schizophrenia Data and Software Tool (NUSDAST) dataset. Results: At each longitudinal timepoint, the transferred normative models achieved a mean[std. dev.] explained variance of 9.4[8.8]%, 9.2[9.2]%, 5.6[7.4]% respectively in the control group and 4.7[5.5]%, 6.0[6.2]%, 4.2[6.9]% in the schizophrenia group. Diagnostic classifiers achieved AUC of 0.78, 0.76 and 0.71 respectively. Conclusions: This replicates the utility of normative models for diagnostic classification of schizophrenia and showcases the use of PCNportal for clinical neuroimaging. By facilitating and speeding up research with high-quality normative models, this work contributes to research in inter-individual variability, clinical heterogeneity and precision medicine.

11.
medRxiv ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37398392

ABSTRACT

INTRODUCTION: Neuroanatomical normative modelling can capture individual variability in Alzheimer's Disease (AD). We used neuroanatomical normative modelling to track individuals' disease progression in people with mild cognitive impairment (MCI) and patients with AD. METHODS: Cortical thickness and subcortical volume neuroanatomical normative models were generated using healthy controls (n~58k). These models were used to calculate regional Z-scores in 4361 T1-weighted MRI time-series scans. Regions with Z-scores <-1.96 were classified as outliers and mapped on the brain, and also summarised by total outlier count (tOC). RESULTS: Rate of change in tOC increased in AD and in people with MCI who converted to AD and correlated with multiple non-imaging markers. Moreover, a higher annual rate of change in tOC increased the risk of MCI progression to AD. Brain Z-score maps showed that the hippocampus had the highest rate of atrophy change. CONCLUSIONS: Individual-level atrophy rates can be tracked by using regional outlier maps and tOC.

12.
Article in English | MEDLINE | ID: mdl-37648206

ABSTRACT

BACKGROUND: Patients with schizophrenia show abnormal gaze processing, which is associated with social dysfunction. These abnormalities are related to aberrant connectivity among brain regions that are associated with visual processing, social cognition, and cognitive control. In this study, we investigated 1) how effective connectivity during gaze processing is disrupted in schizophrenia and 2) how this may contribute to social dysfunction and clinical symptoms. METHODS: Thirty-nine patients with schizophrenia/schizoaffective disorder (SZ) and 33 healthy control participants completed an eye gaze processing task during functional magnetic resonance imaging. Participants viewed faces with different gaze angles and performed explicit and implicit gaze processing. Four brain regions-the secondary visual cortex, posterior superior temporal sulcus, inferior parietal lobule, and posterior medial frontal cortex-were identified as nodes for dynamic causal modeling analysis. RESULTS: Both the SZ and healthy control groups showed similar model structures for general gaze processing. Explicit gaze discrimination led to changes in effective connectivity, including stronger excitatory, bottom-up connections from the secondary visual cortex to the posterior superior temporal sulcus and inferior parietal lobule and inhibitory, top-down connections from the posterior medial frontal cortex to the secondary visual cortex. Group differences in top-down modulation from the posterior medial frontal cortex to the posterior superior temporal sulcus and inferior parietal lobule were noted, such that these inhibitory connections were attenuated in the healthy control group but further strengthened in the SZ group. Connectivity was associated with social dysfunction and symptom severity. CONCLUSIONS: The SZ group showed notably stronger top-down inhibition during explicit gaze discrimination, which was associated with more social dysfunction but less severe symptoms among patients. These findings help pinpoint neural mechanisms of aberrant gaze processing and may serve as future targets for interventions that combine neuromodulation with social cognitive training.


Subject(s)
Fixation, Ocular , Schizophrenia , Humans , Social Interaction , Brain , Temporal Lobe
13.
Elife ; 122023 03 13.
Article in English | MEDLINE | ID: mdl-36912775

ABSTRACT

In this work, we expand the normative model repository introduced in Rutherford et al., 2022a to include normative models charting lifespan trajectories of structural surface area and brain functional connectivity, measured using two unique resting-state network atlases (Yeo-17 and Smith-10), and an updated online platform for transferring these models to new data sources. We showcase the value of these models with a head-to-head comparison between the features output by normative modeling and raw data features in several benchmarking tasks: mass univariate group difference testing (schizophrenia versus control), classification (schizophrenia versus control), and regression (predicting general cognitive ability). Across all benchmarks, we show the advantage of using normative modeling features, with the strongest statistically significant results demonstrated in the group difference testing and classification tasks. We intend for these accessible resources to facilitate the wider adoption of normative modeling across the neuroimaging community.


Subject(s)
Magnetic Resonance Imaging , Schizophrenia , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging
14.
J Psychopathol Clin Sci ; 132(6): 733-748, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37384487

ABSTRACT

BACKGROUND: Gaze perception is a basic building block of social cognition, which is impaired in schizophrenia (SZ) and contributes to functional outcomes. Few studies, however, have investigated neural underpinnings of gaze perception and their relation to social cognition. We address this gap. METHOD: We recruited 77 SZ patients and 71 healthy controls, who completed various social-cognition tasks. During functional magnetic resonance imaging, participants (62 SZ, 54 controls) completed a gaze-perception task, where they judged whether faces with varying gaze angles were self-directed or averted; as a control condition, participants identified stimulus gender. Activation estimates were extracted based on (a) task versus baseline, (b) gaze-perception versus gender-identification, (c) parametric modulation by perception of stimuli as self-directed versus averted, and (d) parametric modulation by stimulus gaze angle. We used latent variable analysis to test associations among diagnostic group, brain activation, gaze perception, and social cognition. RESULTS: Preferential activation to gaze perception was observed throughout dorsomedial prefrontal cortex, superior temporal sulcus, and insula. Activation was modulated by stimulus gaze angle and perception of stimuli as self-directed versus averted. More precise gaze perception and higher task-related activation were associated with better social cognition. Patients with SZ showed hyperactivation within left pre-/postcentral gyrus, which was associated with more precise gaze perception and fewer symptoms and thus may be a compensatory mechanism. CONCLUSIONS: Neural and behavioral indices of gaze perception were related to social cognition, across patients and controls. This suggests gaze perception is an important perceptual building block for more complex social cognition. Results are discussed in the context of dimensional psychopathology and clinical heterogeneity. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Schizophrenia , Humans , Social Cognition , Brain/diagnostic imaging , Brain/physiology , Nervous System , Brain Mapping
15.
JAMA Psychiatry ; 79(11): 1133-1138, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36169987

ABSTRACT

Importance: To make progress toward precision psychiatry, it is crucial to move beyond case-control studies and instead capture individual variations and interpret them in the context of a normal range of biological systems. Objective: To evaluate whether baseline deviations from a normative reference range in subcortical volumes are better predictors of antipsychotic treatment response than raw volumes in patients with first-episode psychosis (FEP) who were naive to antipsychotic medication. Design, Setting, and Participants: In this prospective longitudinal study, patients with first-episode psychosis who were referred from different clinical settings (emergency department, inpatient units, and outpatient clinics) at the University of Alabama at Birmingham were included. A total of 286 patients were screened, 114 consented, 104 enrolled in the treatment trial, and 85 completed the trial. Patients were observed for 16 weeks. Controls were matched by age and sex. Data were collected between June 2016 and July 2021, and data were analyzed from August 2021 to June 2022. Interventions: Risperidone on a flexible dosing scheme for 16 weeks. There was an option to switch to aripiprazole for excessive adverse effects. Main Outcomes and Measures: The main outcome of this study was to evaluate, in patients with FEP who were naive to antipsychotic medication, the association of baseline raw volumes and volume deviations in subcortical brain regions with response to antipsychotic medication. Raw brain volumes or volume deviation changes after treatment were not examined. Results: Of 190 included participants, 111 (58.4%) were male, and the mean (SD) age was 23.7 (5.5) years. Volumes and deviations were quantified in 98 patients with FEP, and data from 92 controls were used as comparison for case-control contrasts and reference curve calibration. In case-control contrasts, patients with FEP had lower raw thalamus (P = .002; F = 9.63; df = 1), hippocampus (P = .009; F = 17.23; df = 1), amygdala (P = .01; F = 6.55; df = 1), ventral diencephalon (P = .03; F = 4.84; df = 1), and brainstem volumes (P = .004; F = 8.39; df = 1). Of 98 patients, 36 patients with FEP (36%) displayed extreme deviations. Associations with treatment response significantly differed between raw volume and deviation measures in the caudate (z = -2.17; P = .03) and putamen (z = -2.15; P = .03). Conclusions and Relevance: These data suggest that normative modeling allows capture of interindividual heterogeneity of regional brain volumes in patients with FEP and characterize structural pathology in a clinically relevant fashion. This holds promise for progress in precision medicine in psychiatry, where group-level studies have failed to derive reliable maps of structural pathology.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Adult , Female , Humans , Male , Young Adult , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Brain/diagnostic imaging , Brain/pathology , Case-Control Studies , Longitudinal Studies , Magnetic Resonance Imaging , Prospective Studies , Psychotic Disorders/drug therapy , Psychotic Disorders/pathology
16.
Neuroinformatics ; 20(1): 173-185, 2022 01.
Article in English | MEDLINE | ID: mdl-34129169

ABSTRACT

Fetal resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a critical new approach for characterizing brain development before birth. Despite the rapid and widespread growth of this approach, at present, we lack neuroimaging processing pipelines suited to address the unique challenges inherent in this data type. Here, we solve the most challenging processing step, rapid and accurate isolation of the fetal brain from surrounding tissue across thousands of non-stationary 3D brain volumes. Leveraging our library of 1,241 manually traced fetal fMRI images from 207 fetuses, we trained a Convolutional Neural Network (CNN) that achieved excellent performance across two held-out test sets from separate scanners and populations. Furthermore, we unite the auto-masking model with additional fMRI preprocessing steps from existing software and provide insight into our adaptation of each step. This work represents an initial advancement towards a fully comprehensive, open-source workflow, with openly shared code and data, for fetal functional MRI data preprocessing.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Brain/diagnostic imaging , Fetus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer
17.
PLoS One ; 17(12): e0278776, 2022.
Article in English | MEDLINE | ID: mdl-36480551

ABSTRACT

Clinical neuroimaging data availability has grown substantially in the last decade, providing the potential for studying heterogeneity in clinical cohorts on a previously unprecedented scale. Normative modeling is an emerging statistical tool for dissecting heterogeneity in complex brain disorders. However, its application remains technically challenging due to medical data privacy issues and difficulties in dealing with nuisance variation, such as the variability in the image acquisition process. Here, we approach the problem of estimating a reference normative model across a massive population using a massive multi-center neuroimaging dataset. To this end, we introduce a federated probabilistic framework using hierarchical Bayesian regression (HBR) to complete the life-cycle of normative modeling. The proposed model provides the possibilities to learn, update, and adapt the model parameters on decentralized neuroimaging data. Our experimental results confirm the superiority of HBR in deriving more accurate normative ranges on large multi-site neuroimaging datasets compared to the current standard methods. In addition, our approach provides the possibility to recalibrate and reuse the learned model on local datasets and even on datasets with very small sample sizes. The proposed method will facilitate applications of normative modeling as a medical tool for screening the biological deviations in individuals affected by complex illnesses such as mental disorders.


Subject(s)
Privacy , Humans , Bayes Theorem
18.
Nat Protoc ; 17(7): 1711-1734, 2022 07.
Article in English | MEDLINE | ID: mdl-35650452

ABSTRACT

Normative modeling is an emerging and innovative framework for mapping individual differences at the level of a single subject or observation in relation to a reference model. It involves charting centiles of variation across a population in terms of mappings between biology and behavior, which can then be used to make statistical inferences at the level of the individual. The fields of computational psychiatry and clinical neuroscience have been slow to transition away from patient versus 'healthy' control analytic approaches, probably owing to a lack of tools designed to properly model biological heterogeneity of mental disorders. Normative modeling provides a solution to address this issue and moves analysis away from case-control comparisons that rely on potentially noisy clinical labels. Here we define a standardized protocol to guide users through, from start to finish, normative modeling analysis using the Predictive Clinical Neuroscience toolkit (PCNtoolkit). We describe the input data selection process, provide intuition behind the various modeling choices and conclude by demonstrating several examples of downstream analyses that the normative model may facilitate, such as stratification of high-risk individuals, subtyping and behavioral predictive modeling. The protocol takes ~1-3 h to complete.


Subject(s)
Mental Disorders , Neurosciences , Psychiatry , Case-Control Studies , Computational Biology/methods , Humans , Psychiatry/methods
19.
Elife ; 112022 02 01.
Article in English | MEDLINE | ID: mdl-35101172

ABSTRACT

Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2-100) and used normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision-making.


Subject(s)
Aging/physiology , Big Data , Brain/growth & development , Models, Statistical , Adolescent , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Child , Child, Preschool , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Young Adult
20.
Schizophr Res ; 229: 112-121, 2021 03.
Article in English | MEDLINE | ID: mdl-33229223

ABSTRACT

BACKGROUND: Abnormal eye gaze perception is related to symptoms and social functioning in schizophrenia. However, little is known about the brain network mechanisms underlying these abnormalities. Here, we employed dynamic causal modeling (DCM) of fMRI data to discover aberrant effective connectivity within networks associated with eye gaze processing in schizophrenia. METHODS: Twenty-seven patients (schizophrenia/schizoaffective disorder, SZ) and 22 healthy controls (HC) completed an eye gaze processing task during fMRI. Participants viewed faces with different gaze angles and performed explicit gaze discrimination (Gaze: "Looking at you?" yes/no) or implicit gaze processing (Gender: "male or female?"). Four brain regions, the secondary visual cortex (Vis), posterior superior temporal sulcus (pSTS), inferior parietal lobule (IPL), and posterior medial frontal cortex (pMFC) were identified as nodes for subsequent DCM analysis. RESULTS: SZ and HC showed similar generative model structure, but SZ showed altered connectivity for specific self-connections, inter-regional connections during all gaze processing (reduced excitatory bottom-up and enhanced inhibitory top-down connections), and modulation by explicit gaze discrimination (increased frontal inhibition of visual cortex). Altered effective connectivity was significantly associated with poorer social cognition and functioning. CONCLUSIONS: General gaze processing in SZ is associated with distributed cortical dysfunctions and bidirectional connectivity between regions, while explicit gaze discrimination involves predominantly top-down abnormalities in the visual system. These results suggest plausible neural mechanisms underpinning gaze processing deficits and may serve as bio-markers for intervention.


Subject(s)
Schizophrenia , Brain/diagnostic imaging , Brain Mapping , Female , Fixation, Ocular , Humans , Magnetic Resonance Imaging , Male , Schizophrenia/complications , Schizophrenia/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL