Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(52): e2314998120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127983

ABSTRACT

We report the hydrogen-bonding dynamics of water to a nitrile-functionalized and plasmonic electrode surface as a function of applied voltage. The surface-enhanced two-dimensional infrared spectra exhibit hydrogen-bonded and non-hydrogen-bonded nitrile features in similar proportions, plus cross peaks between the two. Isotopic dilution experiments show that the cross peaks arise predominantly from chemical exchange between hydrogen-bonded and non-hydrogen-bonded nitriles. The chemical exchange rate depends upon voltage, with the hydrogen bond of the water to the nitriles breaking 2 to 3 times slower (>63 vs. 25 ps) under a positive as compared to a negative potential. Spectral diffusion created by hydrogen-bond fluctuations occurs on a ~1 ps timescale and is moderately potential-dependent. Timescales from molecular dynamics simulations agree qualitatively with the experiment and show that a negative voltage causes a small net displacement of water away from the surface. These results show that the voltage applied to an electrode can alter the timescales of solvent motion at its interface, which has implications for electrochemically driven reactions.

2.
J Am Chem Soc ; 146(2): 1543-1553, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38181505

ABSTRACT

Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.

3.
J Pediatr Gastroenterol Nutr ; 78(5): 1155-1160, 2024 May.
Article in English | MEDLINE | ID: mdl-38482943

ABSTRACT

Unsedated transnasal endoscopy (TNE) is an alternative method of examining the esophageal mucosa in pediatric patients with eosinophilic esophagitis (EoE), reducing cost, time, and risk associated with frequent surveillance esophagogastroduodenoscopies (EGD). Adequacy of transnasal esophageal biopsies for the evaluation of eosinophilic esophagitis histologic scoring system (EoEHSS) has not yet been evaluated. We compared procedure times, endoscopic findings, and EoEHSS scoring for EoE patients undergoing TNE versus standard EGD. Sixty-six TNE patients and 132 EGD controls matched for age (mean age 14.0 years) and disease status (29.3% active) were included. Compared to patients undergoing standard EGD, patients undergoing TNE spent 1.94 h less in the GI suite (p < 0.0001), with comparable occurrence rates of all visual endoscopic findings and most EoEHSS components. TNE serves as a useful tool for long-term disease surveillance, and consideration should be given to its use in clinical trials for EoE.


Subject(s)
Eosinophilic Esophagitis , Humans , Eosinophilic Esophagitis/diagnosis , Eosinophilic Esophagitis/pathology , Male , Adolescent , Female , Child , Endoscopy, Digestive System/methods , Biopsy/methods , Esophagoscopy/methods , Esophagus/pathology , Esophagus/diagnostic imaging , Case-Control Studies
4.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38341780

ABSTRACT

Understanding water dynamics at charged interfaces is of great importance in various fields, such as catalysis, biomedical processes, and solar cell materials. In this study, we implemented molecular dynamics simulations of a system of pure water interfaced with Au electrodes, on one side of which 4-mercaptobenzonitrile (4-MBN) molecules are adsorbed. We calculated time correlation functions of various dynamic quantities, such as the hydrogen bond status of the N atom of the adsorbed 4-MBN molecules, the rotational motion of the water OH bond, hydrogen bonds between 4-MBN and water, and hydrogen bonds between water molecules in the interface region. Using the Luzar-Chandler model, we analyzed the hydrogen bond dynamics between a 4-MBN and a water molecule. The dynamic quantities we calculated can be divided into two categories: those related to the collective behavior of interfacial water molecules and the H-bond interaction between a water molecule and the CN group of 4-MBN. We found that these two categories of dynamic quantities exhibit opposite trends in response to applied potentials on the Au electrode. We anticipate that the present work will help improve our understanding of the interfacial dynamics of water in various electrolyte systems.

5.
J Am Chem Soc ; 145(33): 18529-18537, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37578394

ABSTRACT

The potassium ion (K+) configurations of the selectivity filter of the KcsA ion channel protein are investigated with two-dimensional infrared (2D IR) spectroscopy of amide I vibrations. Single 13C-18O isotope labels are used, for the first time, to selectively probe the S1/S2 or S2/S3 binding sites in the selectivity filter. These binding sites have the largest differences in ion occupancy in two competing K+ transport mechanisms: soft-knock and hard-knock. According to the former, water molecules alternate between K+ ions in the selectivity filter while the latter assumes that K+ ions occupy the adjacent sites. Molecular dynamics simulations and computational spectroscopy are employed to interpret experimental 2D IR spectra. We find that in the closed conductive state of the KcsA channel, K+ ions do not occupy adjacent binding sites. The experimental data is consistent with simulated 2D IR spectra of soft-knock ion configurations. In contrast, the simulated spectra for the hard-knock ion configurations do not reproduce the experimental results. 2D IR spectra of the hard-knock mechanism have lower frequencies, homogeneous 2D lineshapes, and multiple peaks. In contrast, ion configurations of the soft-knock model produce 2D IR spectra with a single peak at a higher frequency and inhomogeneous lineshape. We conclude that under equilibrium conditions, in the absence of transmembrane voltage, both water and K+ ions occupy the selectivity filter of the KcsA channel in the closed conductive state. The ion configuration is central to the mechanism of ion transport through potassium channels.


Subject(s)
Potassium Channels , Potassium , Potassium Channels/chemistry , Potassium/chemistry , Spectrophotometry, Infrared , Isotopes , Ions/chemistry , Water/metabolism , Bacterial Proteins/chemistry , Protein Conformation
6.
J Pediatr Gastroenterol Nutr ; 77(4): 460-467, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37438891

ABSTRACT

OBJECTIVES: Aerodigestive disorders encompass various pathological conditions affecting the lungs, upper airway, and gastrointestinal tract in children. While advanced care has primarily occurred in specialty centers, many children first present to general pediatric gastroenterologists with aerodigestive symptoms necessitating awareness of these conditions. At the 2021 Annual North American Society for Pediatric Gastroenterology, Hepatology and Nutrition meeting, the aerodigestive Special Interest Group held a full-day symposium entitled, Pediatric Aerodigestive Medicine: Advancing Collaborative Care of Children with Aerodigestive Disorders. The symposium aimed to underline the significance of a multidisciplinary approach to achieve better outcomes for these complex patients. METHODS: The symposium brought together leading experts to highlight the growing aerodigestive field, promote new scientific and therapeutic strategies, share the structure and benefits of a multidisciplinary approach in diagnosing common and rare aerodigestive disorders, and foster multidisciplinary discussion of complex cases while highlighting the range of therapeutic and diagnostic options. In this article, we showcase the diagnostic and therapeutic approach to oropharyngeal dysphagia (OPD), one of the most common aerodigestive conditions, emphasizing the role of a collaborative model. CONCLUSIONS: The aerodigestive field has made significant progress and continues to grow due to a unique multidisciplinary, collaborative model of care for these conditions. Despite diagnostic and therapeutic challenges, the multidisciplinary approach has enabled and greatly improved efficient, high-quality, and evidence-based care for patients, including those with OPD.


Subject(s)
Deglutition Disorders , Gastroenterology , Medicine , Humans , Child , Deglutition Disorders/diagnosis , Deglutition Disorders/etiology , Deglutition Disorders/therapy , Lung
7.
Nature ; 551(7679): 247-250, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29088702

ABSTRACT

Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival. Here we show that a similar therapy-resistant cell state underlies the behaviour of persister cells derived from a wide range of cancers and drug treatments. Consequently, we demonstrate that persister cells acquire a dependency on GPX4. Loss of GPX4 function results in selective persister cell ferroptotic death in vitro and prevents tumour relapse in mice. These findings suggest that targeting of GPX4 may represent a therapeutic strategy to prevent acquired drug resistance.


Subject(s)
Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Glutathione Peroxidase/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Antioxidants/metabolism , Drug Evaluation, Preclinical , Female , Humans , Iron/metabolism , Male , Mesoderm/drug effects , Mesoderm/enzymology , Mesoderm/pathology , Mice , Molecular Targeted Therapy , Neoplasms/enzymology , Phospholipid Hydroperoxide Glutathione Peroxidase , Recurrence , Xenograft Model Antitumor Assays
8.
Nature ; 547(7664): 453-457, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28678785

ABSTRACT

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFß-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Subject(s)
Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Neoplasms/drug therapy , Neoplasms/enzymology , Cadherins/metabolism , Cell Death , Cell Line, Tumor , Cell Lineage , Cell Transdifferentiation , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition , Humans , Iron/metabolism , Lipid Peroxides/metabolism , Male , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/metabolism , Melanoma/pathology , Mesoderm/drug effects , Mesoderm/enzymology , Mesoderm/metabolism , Mesoderm/pathology , Neoplasms/genetics , Neoplasms/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteomics , Proto-Oncogene Proteins B-raf/genetics , Reproducibility of Results , Zinc Finger E-box-Binding Homeobox 1/genetics
9.
Nat Chem Biol ; 16(5): 497-506, 2020 05.
Article in English | MEDLINE | ID: mdl-32231343

ABSTRACT

We recently described glutathione peroxidase 4 (GPX4) as a promising target for killing therapy-resistant cancer cells via ferroptosis. The onset of therapy resistance by multiple types of treatment results in a stable cell state marked by high levels of polyunsaturated lipids and an acquired dependency on GPX4. Unfortunately, all existing inhibitors of GPX4 act covalently via a reactive alkyl chloride moiety that confers poor selectivity and pharmacokinetic properties. Here, we report our discovery that masked nitrile-oxide electrophiles, which have not been explored previously as covalent cellular probes, undergo remarkable chemical transformations in cells and provide an effective strategy for selective targeting of GPX4. The new GPX4-inhibiting compounds we describe exhibit unexpected proteome-wide selectivity and, in some instances, vastly improved physiochemical and pharmacokinetic properties compared to existing chloroacetamide-based GPX4 inhibitors. These features make them superior tool compounds for biological interrogation of ferroptosis and constitute starting points for development of improved inhibitors of GPX4.


Subject(s)
Enzyme Inhibitors/pharmacology , Nitriles/chemistry , Nitriles/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Ferroptosis/drug effects , Humans , Lipid Peroxidation/drug effects , Mice, SCID , Molecular Probes/chemistry , Molecular Targeted Therapy , Oxides/chemistry , Phospholipid Hydroperoxide Glutathione Peroxidase/chemistry , Prodrugs/chemistry , Rats, Wistar , Selenocysteine/chemistry , Selenocysteine/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
10.
BMC Genomics ; 22(1): 404, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34082717

ABSTRACT

BACKGROUND: Nearly 50% of crop yields are lost to pests and disease, with plants and pathogens locked in an amplified co-evolutionary process of disease outbreaks. Coffee wilt disease, caused by Fusarium xylarioides, decimated coffee production in west and central Africa following its initial outbreak in the 1920s. After successful management, it later re-emerged and by the 2000s comprised two separate epidemics on arabica coffee in Ethiopia and robusta coffee in east and central Africa. RESULTS: Here, we use genome sequencing of six historical culture collection strains spanning 52 years to identify the evolutionary processes behind these repeated outbreaks. Phylogenomic reconstruction using 13,782 single copy orthologs shows that the robusta population arose from the initial outbreak, whilst the arabica population is a divergent sister clade to the other strains. A screen for putative effector genes involved in pathogenesis shows that the populations have diverged in gene content and sequence mainly by vertical processes within lineages. However, 15 putative effector genes show evidence of horizontal acquisition, with close homology to genes from F. oxysporum. Most occupy small regions of homology within wider scaffolds, whereas a cluster of four genes occupy a 20Kb scaffold with strong homology to a region on a mobile pathogenicity chromosome in F. oxysporum that houses known effector genes. Lacking a match to the whole mobile chromosome, we nonetheless found close associations with DNA transposons, especially the miniature impala type previously proposed to facilitate horizontal transfer of pathogenicity genes in F. oxysporum. These findings support a working hypothesis that the arabica and robusta populations partly acquired distinct effector genes via transposition-mediated horizontal transfer from F. oxysporum, which shares coffee as a host and lives on other plants intercropped with coffee. CONCLUSION: Our results show how historical genomics can help reveal mechanisms that allow fungal pathogens to keep pace with our efforts to resist them. Our list of putative effector genes identifies possible future targets for fungal control. In turn, knowledge of horizontal transfer mechanisms and putative donor taxa might help to design future intercropping strategies that minimize the risk of transfer of effector genes between closely-related Fusarium taxa.


Subject(s)
Fusarium , Coffee , Disease Outbreaks , Ethiopia , Fusarium/genetics , Genomics , Plant Diseases
11.
Environ Microbiol ; 23(1): 372-375, 2021 01.
Article in English | MEDLINE | ID: mdl-33196130

ABSTRACT

High-quality microbiome research relies on the integrity, management and quality of supporting data. Currently biobanks and culture collections have different formats and approaches to data management. This necessitates a standard data format to underpin research, particularly in line with the FAIR data standards of findability, accessibility, interoperability and reusability. We address the importance of a unified, coordinated approach that ensures compatibility of data between that needed by biobanks and culture collections, but also to ensure linkage between bioinformatic databases and the wider research community.


Subject(s)
Databases, Factual/standards , Microbiota , Computational Biology , Europe , Research/standards
12.
IEEE Trans Microw Theory Tech ; 68(11): 4925-4939, 2020.
Article in English | MEDLINE | ID: mdl-35023878

ABSTRACT

We present a general model of noisy scattering-parameter (S-parameter) measurements performed by a vector network analyzer (VNA). The residual error of the S-parameter due to the noise is examined to appear like a complex Gaussian quotient. The statistical analysis of the residual error is given, and relevant statistical quantities are derived and discussed. Experiments were conducted on a two-port VNA to validate the noise-influenced S-parameter model. We show that the uncertainty due to the noise is often critical in S-parameter measurements, in particular for S-parameters of a small magnitude.

13.
J Phys Chem A ; 122(25): 5635-5643, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29864271

ABSTRACT

Many transition metals commonly encountered in inorganic materials and organometallic compounds possess NMR-active nuclei with very low gyromagnetic ratios (γ) such as 89Y, 103Rh, 109Ag, and 183W. A low-γ leads to poor NMR sensitivity and other experimental challenges. Consequently, nuclei with low-γ are often impossible to study with conventional solid-state NMR methods. Here, we combine fast magic angle spinning (MAS) and proton detection to enhance the sensitivity of solid-state NMR experiments with very low-γ nuclei by 1-2 orders of magnitude. Coherence transfer between 1H and low-γ nuclei was performed with low-power double quantum (DQ) or zero quantum (ZQ) cross-polarization (CP) or dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT). Comparison of the absolute sensitivity of CP NMR experiments performed with proton detection with 1.3 mm rotors and direct detection with 4 mm rotors shows that proton detection with a 1.3 mm rotor provides a significant boost in absolute sensitivity, while requiring approximately 1/40th of the material required to fill a 4 mm rotor. Fast MAS and proton detection were applied to obtain 89Y and 103Rh solid-state NMR spectra of organometallic complexes. These results demonstrate that proton detection and fast MAS represents a general approach to enable and accelerate solid-state NMR experiments with very low-γ nuclei.

14.
Curr Heart Fail Rep ; 15(4): 214-223, 2018 08.
Article in English | MEDLINE | ID: mdl-29959688

ABSTRACT

PURPOSE OF REVIEW: Hibernation is an important and reversible cause of myocardial dysfunction in ischaemic heart failure. RECENT FINDINGS: Hibernation is an adaptive process that promotes myocyte survival over maintaining contractile function. It is innate to mammalian physiology, sharing features with physiological hibernation in other species. Advanced imaging methods have reasonable accuracy in identifying hibernating myocardium. Novel superior hybrid methods may provide diagnostic potential. New evidence supports the role of surgical revascularisation in ischaemic heart failure, but the role of viability tests in planning such procedures remains unclear. Research to date has exclusively involved patients with ambulatory heart failure: Investigating the role of hibernation in ADHF is a key avenue for the future. Whilst our understanding of hibernation pathophysiology has improved dramatically, the clinical utility of identifying and targeting hibernation remains unclear.


Subject(s)
Echocardiography/methods , Heart Failure , Magnetic Resonance Imaging, Cine/methods , Myocardial Contraction/physiology , Myocardial Reperfusion/methods , Myocardial Stunning , Heart Failure/complications , Heart Failure/diagnosis , Heart Failure/therapy , Humans , Myocardial Stunning/diagnosis , Myocardial Stunning/etiology , Myocardial Stunning/therapy , Myocardium/metabolism , Myocardium/pathology
15.
Cardiol Young ; 27(2): 284-293, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27225323

ABSTRACT

BACKGROUND: Adults with tetralogy of Fallot experience atrial tachyarrhythmias; however, there are a few data on the outcomes of radiofrequency ablation. We examined the characteristics, outcome, and predictors of recurrence of atrial tachyarrhythmias after radiofrequency ablation in tetralogy of Fallot patients. Methods/results Retrospective data were collected from 2004 to 2013. In total, 56 ablations were performed on 37 patients. We identified two matched controls per case: patients with tetralogy of Fallot but no radiofrequency ablation and not known to have atrial tachyarrhythmias. Acute success was 98%. Left atrial arrhythmias increased in frequency over time. The mean follow-up was 41 months; 78% were arrhythmia-free. Number of cardiac surgeries, age, and presence of atrial fibrillation were predictors of recurrence. Lone cavo-tricuspid isthmus-dependent flutter reduced the likelihood of atrial fibrillation. Right and left atria in patients with tetralogy of Fallot were larger in ablated cases than controls. NYHA class was worse in cases and improved after ablation; baseline status predicted death. Of matched non-ablated controls, a number of them had atrial fibrillation. These patients were excluded from the case-control study but analysed separately. Most of them had died during follow-up, whereas of the matched ablated cases all were alive and the majority in sinus rhythm. CONCLUSION: Patients with tetralogy of Fallot and atrial tachyarrhythmias have more dilated atria than those without atrial tachyarrhythmias. Radiofrequency ablation improves functional status. Left atrial ablation is more commonly required with repeat procedures. There is a high prevalence of atrial tachyarrhythmias, particularly atrial fibrillation, in patients with tetralogy of Fallot; early radiofrequency ablation may have a protective effect against this.


Subject(s)
Atrial Fibrillation/surgery , Catheter Ablation/methods , Heart Conduction System/surgery , Tetralogy of Fallot/complications , Adult , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Case-Control Studies , Electrocardiography , Female , Follow-Up Studies , Heart Conduction System/physiopathology , Humans , Male , Middle Aged , Retrospective Studies , Time Factors , Treatment Outcome
17.
Glycobiology ; 25(7): 784-91, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25795684

ABSTRACT

Human sialidases (NEUs) catalyze the removal of N-acetyl neuraminic acids from the glycome of the cell and regulate a diverse repertoire of nominal cellular functions, such as cell signaling and adhesion. A greater understanding of their substrate permissivity is of interest in order to discern their physiological functions in disease states and in the design of specific and effective small molecule inhibitors. Towards this, we have synthesized soluble fluorogenic reporters of mammalian sialidase activity bearing unnatural sialic acids commonly incorporated into the cellular glycocalyx via metabolic glycoengineering. We found cell-surface sialidases in Jurkat capable of cleaving unnatural sialic acids with differential activities toward a variety of R groups on neuraminic acid. In addition, we observed modulated structure-activity relationships when cell-surface sialidases were presented glycans with unnatural bulky, hydrophobic or fluorinated moieties incorporated directly via glycoengineering. Our results confirm the importance of cell-surface sialidases in glycoengineering incorporation data. We demonstrate the flexibility of human NEUs toward derivatized sugars and highlight the importance of native glycan presentation to sialidase binding and activity. These results stand to inform not only metabolic glycoengineering efforts but also inhibitor design.


Subject(s)
Bioengineering , Neuraminidase/metabolism , Cell Line , Cell Membrane/metabolism , Chromatography, High Pressure Liquid , Glycosides/metabolism , Hexosamines/metabolism , Humans , Jurkat Cells
18.
Cryo Letters ; 35(1): 63-9, 2014.
Article in English | MEDLINE | ID: mdl-24872159

ABSTRACT

BACKGROUND: The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. OBJECTIVE: The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. METHODS: In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. RESULTS: In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. CONCLUSION: The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.


Subject(s)
Cryopreservation/instrumentation , Fungi/physiology , Genome, Fungal , Biological Specimen Banks , Cryopreservation/methods , DNA, Intergenic , Genetic Markers , Genomic Instability , Microbial Viability , Nitrogen , Species Specificity , Tandem Repeat Sequences
19.
J Phys Chem B ; 127(9): 2083-2091, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36821845

ABSTRACT

Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10-20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3-5 nm Al2O3, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages.

20.
Sci Rep ; 13(1): 9327, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291178

ABSTRACT

Coffee wilt disease, caused by the fungus Fusarium xylarioides, is a vascular wilt disease that has affected coffee production in sub-Saharan Africa over the past century. Today, the disease has two host-specific populations specialising on arabica and robusta coffee crops, which grow at high and low altitude, respectively. Here we test whether adaptation to different temperatures contributes to specialisation of the fungi on each crop. Firstly, climate models show that the severity of the arabica and robusta populations of coffee wilt disease correlates with temperature. The robusta population shows higher peak severity than the arabica population overall, but the latter has greater cold tolerance. Secondly, growth assays of thermal performance of fungal strains in vitro show that, while robusta strains grow faster than arabicas at intermediate temperatures, the arabica strains have higher sporulation and spore germination rates at temperatures below 15ºC. The match between environmental patterns of severity in nature with thermal performance of fungal cultures in the laboratory supports a role for temperature adaptation in specialisation on arabica and robusta coffee. Extrapolating our temperature-models to future climate change predicts that disease severity could decline on average due to increased temperature but could increase in some coffee-growing regions.


Subject(s)
Coffea , Fusarium , Coffee , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL