Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biochem Biophys Res Commun ; 566: 135-140, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34119826

ABSTRACT

The global circulation of newly emerging variants of SARS-CoV-2 is a new threat to public health due to their increased transmissibility and immune evasion. Moreover, currently available vaccines and therapeutic antibodies were shown to be less effective against new variants, in particular, the South African (SA) variant, termed 501Y.V2 or B.1.351. To assess the efficacy of the CT-P59 monoclonal antibody against the SA variant, we sought to perform as in vitro binding and neutralization assays, and in vivo animal studies. CT-P59 neutralized B.1.1.7 variant to a similar extent as to wild type virus. CT-P59 showed reduced binding affinity against a RBD (receptor binding domain) triple mutant containing mutations defining B.1.351 (K417N/E484K/N501Y) also showed reduced potency against the SA variant in live virus and pseudovirus neutralization assay systems. However, in vivo ferret challenge studies demonstrated that a therapeutic dosage of CT-P59 was able to decrease B.1.351 viral load in the upper and lower respiratory tracts, comparable to that observed for the wild type virus. Overall, although CT-P59 showed reduced in vitro neutralizing activity against the SA variant, sufficient antiviral effect in B.1.351-infected animals was confirmed with a clinical dosage of CT-P59, suggesting that CT-P59 has therapeutic potential for COVID-19 patients infected with SA variant.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , COVID-19/virology , Immunoglobulin G/therapeutic use , SARS-CoV-2 , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Disease Models, Animal , Female , Ferrets , Humans , Immunoglobulin G/immunology , In Vitro Techniques , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , South Africa , Viral Load/immunology
2.
Biochem Biophys Res Commun ; 578: 91-96, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34547629

ABSTRACT

The SARS-CoV-2 variant is rapidly spreading across the world and causes to resurge infections. We previously reported that CT-P59 presented its in vivo potency against Beta variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on Gamma, Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal studies. CT-P59 showed neutralization against Gamma, Delta, Epsilon, and Kappa variants in cells, with reduced susceptibility. The mouse challenge experiments with Gamma and Delta variants substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against Gamma and Delta variants infection, hinting that CT-P59 has therapeutic potential for patients infected with Gamma, Delta and its associated variants.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Disease Models, Animal , Immunoglobulin G/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Body Weight/drug effects , COVID-19/virology , Female , Humans , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Survival Analysis
3.
Emerg Microbes Infect ; 11(1): 2315-2325, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36006772

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. Despite a successful vaccination programme, the emergence of mutated variants that can escape current levels of immunity mean infections continue. Herein, we report the development of CT-P63, a broad-spectrum neutralizing monoclonal antibody. In vitro studies demonstrated potent neutralizing activity against the most prevalent variants, including Delta and the BA.1 and BA.2 sub-lineages of Omicron. In a transgenic mouse model, prophylactic CT-P63 significantly reduced wild-type viral titres in the respiratory tract and CT-P63 treatment proved efficacious against infection with Beta, Delta, and Omicron variants of SARS-CoV-2 with no detectable infectious virus in the lungs of treated animals. A randomized, double-blind, parallel-group, placebo-controlled, Phase I, single ascending dose study in healthy volunteers (NCT05017168) confirmed the safety, tolerability, and pharmacokinetics of CT-P63. Twenty-four participants were randomized and received the planned dose of CT-P63 or placebo. The safety and tolerability of CT-P63 were evaluated as primary objectives. Eight participants (33.3%) experienced a treatment-emergent adverse event (TEAE), including one grade ≥3 (blood creatine phosphokinase increased). There were no deaths, treatment-emergent serious adverse events, TEAEs of special interest, or TEAEs leading to study drug discontinuation in the CT-P63 groups. Serum CT-P63 concentrations rapidly peaked before declining in a biphasic manner and systemic exposure was dose proportional. Overall, CT-P63 was clinically safe and showed broad-spectrum neutralizing activity against SARS-CoV-2 variants in vitro and in vivo.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Creatine Kinase , Humans , Mice , Spike Glycoprotein, Coronavirus
4.
Nat Commun ; 12(1): 288, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436577

ABSTRACT

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Protein Binding/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Disease Models, Animal , Female , Ferrets , Humans , Leukocytes, Mononuclear , Macaca mulatta , Male , Mesocricetus , Models, Molecular , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
5.
Antiviral Res ; 175: 104709, 2020 03.
Article in English | MEDLINE | ID: mdl-31940474

ABSTRACT

Currently, therapies to treat chronic hepatitis B (CHB) infection are based on the use of interferon-α or nucleos(t)ide analogs (NAs) to prevent viral DNA synthesis by inhibiting the reverse transcriptase activity of the hepatitis B virus (HBV) polymerase (Pol). However, these therapies are not curative; thus, the development of novel anti-HBV agents is needed. In accordance with this unmet medical need, we devised a new target- and cell-based, high-throughput screening assay to identify novel small molecules that block the initial interaction of the HBV Pol with its replication template the viral pregenomic RNA (pgRNA). We screened approximately 110,000 small molecules for the ability to prevent HBV Pol recognition of the pgRNA 5' epsilon (ε) stem-loop structure, identifying (Z)-2-(allylamino)-4-amino-N'-cyanothiazole-5-carboximidamide (AACC). Viral nucleocapsid-captured quantitative RT-PCR and Western blot results revealed that AACC significantly decreased encapsidated pgRNA levels and blocked capsid assembly without affecting core protein expression in stable HBV-replicating cells. As a result, both intra- and extracellular accumulation of viral DNA was strongly reduced. AACC treatment of HepG2-sodium taurocholate transporting polypeptide (NTCP) cells and primary human hepatocytes infected with cell culture- or patient-derived HBV isolates showed both time- and dose-dependent inhibition of infectious viral progeny and rcDNA production. Furthermore, AACC showed cross-genotypic activity against genotypes B, C, and D. Of note, AACC inhibited the viral replication of lamivudine and a capsid inhibitor-resistant HBV, and showed synergistic effects with NAs and a capsid inhibitor. In conclusion, we identified a novel class of compounds specifically targeting the ε-Pol interaction and thereby preventing the encapsidation of pgRNAs into viral capsids. This promising new HBV inhibitor class potently inhibits HBV amplification with distinct characteristics from existing NAs and other drugs currently under development, promising to add value to existing therapies for CHB.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , RNA, Viral/antagonists & inhibitors , Virus Assembly/drug effects , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Cells, Cultured , HEK293 Cells , Hep G2 Cells , Hepatitis B virus/physiology , Hepatocytes/virology , High-Throughput Screening Assays , Humans , RNA, Viral/genetics , Small Molecule Libraries , Virus Replication/drug effects
6.
PLoS One ; 15(7): e0236172, 2020.
Article in English | MEDLINE | ID: mdl-32726321

ABSTRACT

There are several broadly neutralizing monoclonal antibodies that neutralize influenza viruses with different mechanisms from traditional polyclonal antibodies induced by vaccination. CT149, which is one of the broadly neutralizing antibodies, was also previously reported to neutralize group 2 and some of group 1 influenza viruses (13 out of 13 tested group 2 viruses and 5 out of 11 group 1 viruses). In this study, we developed another antibody with the aim of compensating partial coverage of CT149 against group 1 influenza viruses. CT120 was screened among different antibody candidates and mixed with CT149. Importantly, although the binding sites of CT120 and CT149 are close to each other, the two antibodies do not interfere. The mixture of CT120 and CT149, which we named as CT-P27, showed broad efficacy by neutralizing 37 viruses from 11 different subtypes, of both group 1 and 2 influenza A viruses. Moreover, CT-P27 showed in vivo therapeutic efficacy, long prophylactic potency, and synergistic effect with oseltamivir in influenza virus-challenged mouse models. Our findings provide a novel therapeutic opportunity for more efficient treatment of influenza.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antibodies, Neutralizing/pharmacology , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody Specificity/immunology , Antigens, Viral/immunology , Hemagglutination/immunology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A virus , Influenza, Human/prevention & control , Influenza, Human/virology , Mice , Neutralization Tests , Vaccination
7.
Biotechniques ; 59(5): 287-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26554506

ABSTRACT

After encapsidation, where pregenomic RNA (pgRNA) is packaged into viral nucleocapsids, hepatitis B virus (HBV) uses the pgRNA as a template to replicate its DNA genome by reverse transcription. To date, there are only two encapsidation detection methods for evaluating the amount of pgRNA packaged into nucleocapsids: (i) the RNase protection assay and (ii) the native agarose gel electrophoresis assay. However, these methods are complex and laborious because they require multiple pgRNA purification steps followed by detection via an isotope-labeled probe. Moreover, both assays are unsuitable for evaluating a large number of antiviral agents in a dose-dependent manner. To overcome these limitations, we devised a novel HBV encapsidation assay in a 96-well plate format using nucleocapsid capture plates coated with an anti-HBV core (HBc) antibody, usually employed in enzyme-linked immunosorbent assays, to immobilize viral nucleocapsids. Viral pgRNA is then detected by quantitative RT-PCR (RT-qPCR). This strategy allows fast, convenient, and quantitative analysis of multiple viral RNA samples to evaluate encapsidation inhibitors. Furthermore, our protocol is potentially suitable for high-throughput screening (HTS) of compounds targeting HBV pgRNA encapsidation.


Subject(s)
Hepatitis B virus/isolation & purification , Nucleocapsid/isolation & purification , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Hep G2 Cells , Hepatitis B virus/genetics , Humans , Nucleocapsid/genetics , Pathology, Molecular/methods , RNA, Viral/genetics , Virology/methods
8.
Virology ; 406(1): 56-64, 2010 Oct 10.
Article in English | MEDLINE | ID: mdl-20667576

ABSTRACT

The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves as an mRNA as well as an RNA template for viral reverse transcription. We previously reported that HBV Pol (polymerase) suppresses translation of the pgRNA through a mechanism involving the 5 epsilon sequence [Virology 373:112-123(2008)]. Here, we found that the recognition of the 5 epsilon stem-loop structure by HBV Pol is essential for the translation suppression. Intriguingly, the translation suppression was observed only when the 5 epsilon sequence was positioned within approximately 60 nucleotides from the 5' end, which is striking reminiscent of the pgRNA encapsidation. This finding implicates that the translation suppression is mechanistically linked to encapsidation of the pgRNA. However, unexpectedly, the HBV Pol-eIF4E interaction, which we reported recently [J. Virol. 84:52-58(2010)], is not required for the translation suppression. Instead, the data suggested that the cap proximity of 5 epsilon sequence is necessary and sufficient for the translation suppression.


Subject(s)
Gene Products, pol/metabolism , Hepatitis B virus/enzymology , Hepatitis B virus/genetics , RNA Caps/chemistry , RNA Caps/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Base Sequence , Binding Sites , Cell Line , Eukaryotic Initiation Factor-4E/metabolism , Humans , Models, Biological , Nucleic Acid Conformation , Protein Biosynthesis , RNA Caps/metabolism , RNA, Viral/metabolism
9.
Methods Mol Biol ; 634: 137-46, 2010.
Article in English | MEDLINE | ID: mdl-20676981

ABSTRACT

Mutagenesis by the overlap extension PCR has become a standard method of creating mutations including substitutions, insertions, and deletions. Nonetheless, the established overlap PCR mutagenesis is limited in many respects. In particular, it has been difficult to make an insertion larger than 30 nt, since all sequence alterations must be embedded within the primer. Here, we describe a rapid and efficient method for creating insertions or deletions of any length at any position in a DNA molecule. This method is generally applicable, and therefore represents a significant improvement to the now widely used overlap extension PCR method.


Subject(s)
Mutagenesis , Polymerase Chain Reaction/methods , DNA Primers
10.
J Gen Virol ; 90(Pt 9): 2272-81, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19439550

ABSTRACT

During chronic hepatitis B virus (HBV) infection, double substitution mutations in the basal core promoter (BCP) region frequently emerge that include A1762T/G1764A and the neighbouring C1766T/T1768A mutations, here termed BCP1 and BCP2, respectively. Due to a compact viral genome organization, BCP1 and BCP2 mutations result in amino acids changes in the overlapping X gene: K130M/V131I and F132Y, respectively. It has been shown that both BCP mutations lead to a modest increase in viral genome replication. However, the question of whether the alteration that occurs in the overlapping X gene might contribute to the increased viral genome replication has not been properly addressed. This study genetically separated the core promoter from the overlapping X gene using 1.3mer overlength HBV constructs and examined the impact of the X gene mutations on viral genome replication in HepG2 cells. Each BCP mutation resulted in modestly enhanced viral genome replication that occurred via augmented viral transcription. Therefore, it was concluded that these BCP mutations do not affect expression of the overlapping X gene or impair its stimulatory effect on viral genome replication.


Subject(s)
Hepatitis B virus/genetics , Mutation , Promoter Regions, Genetic , Trans-Activators/genetics , Cell Line , Gene Expression Regulation, Viral , Hepatitis B/virology , Hepatitis B virus/physiology , Humans , Phenotype , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins , Virus Replication
11.
J Gen Virol ; 90(Pt 4): 978-986, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19264639

ABSTRACT

HBx, a small regulatory protein of hepatitis B virus, plays an important role in stimulating viral genome replication. HBx was shown to be associated with diverse subcellular locations, such as the nucleus, cytoplasm and mitochondria. Some studies have linked the stimulation of genome replication by HBx to its cytoplasmic function, while other reports have attributed this function to its nuclear component. To clarify this discrepancy, we measured viral genome replication by complementing an HBx-null replicon in two different ways: by (i) co-transfecting with an increasing amount of HBx expression plasmid and (ii) co-transfecting with re-targeted variants of HBx that are confined to either the nucleus or the cytoplasm due to either the nuclear localization signal (NLS) or the nuclear export signal (NES) tags, respectively. Intriguingly, immunostaining analysis indicated that the subcellular localization of HBx is primarily influenced by its abundance; HBx is confined to the nucleus at low levels but is usually detected in the cytoplasm at high levels. Importantly, HBx, whether re-targeted by either the NLS or NES tag, stimulates viral genome replication to a level comparable to that of the wild-type. Furthermore, similar to the wild-type, the stimulation of viral genome replication by the re-targeted HBx occurred at the transcription level. Thus, we concluded that the stimulation of viral genome replication by HBx is linked to both nuclear and cytoplasmic HBx, although the underlying mechanism of stimulation most likely differs.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Viral , Hepatitis B virus/physiology , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication , Cell Line , DNA Replication , Genome, Viral , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Humans , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA, Viral/metabolism , Trans-Activators/genetics , Transfection , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics
12.
Virology ; 373(1): 112-23, 2008 Mar 30.
Article in English | MEDLINE | ID: mdl-18155120

ABSTRACT

The pregenomic RNA (pgRNA) of hepadnaviruses serves a dual role: as mRNA for the core (C) and polymerase (P) synthesis and as an RNA template for viral genome replication. A question arises as to how these two roles are regulated. We hypothesized that the P protein could suppress translation of the pgRNA via its interaction with 5' stem-loop structure (epsilon or encapsidation signal). Consistent with the hypothesis, we observed up-regulation of the C protein level in the absence of the P protein expression in a physiological context. Importantly, translational suppression depended on the 5' epsilon sequence. Furthermore, the impact of the P protein on ongoing translation of the C ORF was directly demonstrated by polysome distribution analysis. We conclude that the P protein suppresses translation of the pgRNA via a mechanism involving its interaction with the 5' epsilon sequence, a finding that implicates the coordinated switch from translation to genome replication.


Subject(s)
5' Untranslated Regions/metabolism , Hepatitis B virus/enzymology , Protein Biosynthesis/drug effects , RNA-Directed DNA Polymerase/metabolism , RNA/drug effects , 5' Untranslated Regions/chemistry , Cell Line , Gene Expression Regulation, Viral , Hepatitis B virus/genetics , Humans , RNA/metabolism , RNA, Viral/metabolism , RNA-Directed DNA Polymerase/pharmacology , Transfection , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Virus Replication
13.
Virology ; 371(2): 362-73, 2008 Feb 20.
Article in English | MEDLINE | ID: mdl-17988705

ABSTRACT

Although an overall genetic strategy for hepadnaviral reverse transcription has been established, the mechanism that underlies the minus-strand transfer is still poorly defined. We and others independently identified a novel cis-acting element, termed beta or varphi, respectively, that is critical for the minus-strand DNA synthesis of hepatitis B virus. A 5'-3', long-range interaction of the RNA template was proposed that involves the 5' epsilon sequence (encapsidation signal) and the 3' beta/varphi sequence. We subjected the hypothesized base pairing to genetic analysis. The data indicated that mutations abrogating the hypothesized base pairing markedly impaired minus-strand DNA synthesis, while compensatory mutations that restored the base pairing rescued the minus-strand DNA synthesis. These results demonstrated the critical role of the 5'-3', long-range interaction in minus-strand DNA synthesis. We speculate that such a long-range interaction may precisely juxtapose a donor to an acceptor during minus-strand transfer.


Subject(s)
Base Pairing , DNA, Viral/biosynthesis , Hepatitis B virus/genetics , RNA, Viral/genetics , Reverse Transcription , Templates, Genetic , Base Sequence , Cell Line, Tumor , DNA, Circular/biosynthesis , Hepatitis B virus/metabolism , Humans , Molecular Sequence Data , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL