Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Nature ; 603(7901): 470-476, 2022 03.
Article in English | MEDLINE | ID: mdl-35236988

ABSTRACT

Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-ß and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPß-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.


Subject(s)
Alzheimer Disease , Follicle Stimulating Hormone , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Bone Density , Cognition , Female , Follicle Stimulating Hormone/metabolism , Humans , Mice , Thermogenesis
2.
Mol Psychiatry ; 28(8): 3324-3331, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37563278

ABSTRACT

Clinical studies and experimental data together support a role for pituitary gonadotropins, including luteinizing hormone (LH), otherwise considered solely as fertility hormones, in age-related cognitive decline. Furthermore, rising levels of LH in post-menopausal women have been implicated in the high prevalence of mood disorders. This study was designed to examine the effect of deficient LH signaling on both cognitive and emotional behavior in 12-month-old Lhcgr-/- mice. For this, we established and validated a battery of five tests, including Dark-Light Box (DLB), Y-Maze Spontaneous Alternation, Novel Object Recognition (NOR), and contextual and cued Fear Conditioning (FCT) tests. We found that 12-month-old female wild type mice display a prominent anxiety phenotype on DLB and FCT. This phenotype was not seen in 12-month-old female Lhcgr-/- mice, indicating full phenotypic rescue. Furthermore, there was no effect of LHCGR depletion on recognition memory or working spatial memory on NOR and Y-maze testing, respectively, in 12-month-old mice, notwithstanding the absence of a basal phenotype in wild type littermates. The latter data do not exclude an effect of LH on cognition documented in previous studies. Finally, 12-month-old male mice and 3-month-old male and female mice did not consistently display deficits on any test. The data collectively document, for the first time, that loss of LH signaling reverses age-related emotional disturbances, a prelude to future targeted therapies that block LH action.


Subject(s)
Anxiety , Fear , Mice , Female , Male , Humans , Animals , Infant , Anxiety/genetics , Aging/psychology , Cues , Phenotype
3.
Proc Natl Acad Sci U S A ; 117(25): 14386-14394, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513693

ABSTRACT

We report that two widely-used drugs for erectile dysfunction, tadalafil and vardenafil, trigger bone gain in mice through a combination of anabolic and antiresorptive actions on the skeleton. Both drugs were found to enhance osteoblastic bone formation in vivo using a unique gene footprint and to inhibit osteoclast formation. The target enzyme, phosphodiesterase 5A (PDE5A), was found to be expressed in mouse and human bone as well as in specific brain regions, namely the locus coeruleus, raphe pallidus, and paraventricular nucleus of the hypothalamus. Localization of PDE5A in sympathetic neurons was confirmed by coimmunolabeling with dopamine ß-hydroxylase, as well as by retrograde bone-brain tracing using a sympathetic nerve-specific pseudorabies virus, PRV152. Both drugs elicited an antianabolic sympathetic imprint in osteoblasts, but with net bone gain. Unlike in humans, in whom vardenafil is more potent than tadalafil, the relative potencies were reversed with respect to their osteoprotective actions in mice. Structural modeling revealed a higher binding energy of tadalafil to mouse PDE5A compared with vardenafil, due to steric clashes of vardenafil with a single methionine residue at position 806 in mouse PDE5A. Collectively, our findings suggest that a balance between peripheral and central actions of PDE5A inhibitors on bone formation together with their antiresorptive actions specify the osteoprotective action of PDE5A blockade.


Subject(s)
Erectile Dysfunction/drug therapy , Osteogenesis/drug effects , Osteoporosis/drug therapy , Phosphodiesterase 5 Inhibitors/pharmacology , Aging/physiology , Animals , Bone Density/drug effects , Bone Density/physiology , Bone and Bones/cytology , Bone and Bones/drug effects , Bone and Bones/metabolism , Brain/cytology , Brain/drug effects , Brain/metabolism , Cell Differentiation/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Drug Repositioning , Erectile Dysfunction/complications , Humans , Male , Mice , Middle Aged , Models, Animal , Models, Molecular , Neurons/drug effects , Neurons/metabolism , Osteoblasts/drug effects , Osteoblasts/physiology , Osteoclasts/drug effects , Osteoclasts/physiology , Osteoporosis/complications , Osteoporotic Fractures/etiology , Osteoporotic Fractures/prevention & control , Phosphodiesterase 5 Inhibitors/chemistry , Phosphodiesterase 5 Inhibitors/therapeutic use , Primary Cell Culture , Tadalafil/chemistry , Tadalafil/pharmacology , Tadalafil/therapeutic use , Vardenafil Dihydrochloride/chemistry , Vardenafil Dihydrochloride/pharmacology , Vardenafil Dihydrochloride/therapeutic use
4.
Proc Natl Acad Sci U S A ; 117(46): 28971-28979, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33127753

ABSTRACT

Blocking the action of FSH genetically or pharmacologically in mice reduces body fat, lowers serum cholesterol, and increases bone mass, making an anti-FSH agent a potential therapeutic for three global epidemics: obesity, osteoporosis, and hypercholesterolemia. Here, we report the generation, structure, and function of a first-in-class, fully humanized, epitope-specific FSH blocking antibody with a KD of 7 nM. Protein thermal shift, molecular dynamics, and fine mapping of the FSH-FSH receptor interface confirm stable binding of the Fab domain to two of five receptor-interacting residues of the FSHß subunit, which is sufficient to block its interaction with the FSH receptor. In doing so, the humanized antibody profoundly inhibited FSH action in cell-based assays, a prelude to further preclinical and clinical testing.


Subject(s)
Adipose Tissue/metabolism , Antibodies, Blocking/immunology , Bone and Bones/metabolism , Epitopes , Follicle Stimulating Hormone/immunology , Animals , Antibodies, Blocking/chemistry , Antibodies, Monoclonal , Bone Density , Female , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone, beta Subunit/immunology , Humans , Hypercholesterolemia , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Obesity , Osteoporosis , Receptors, FSH/metabolism
5.
PLoS Biol ; 17(2): e3000138, 2019 02.
Article in English | MEDLINE | ID: mdl-30730909

ABSTRACT

The sympathetic nervous system (SNS) controls key aspects of adipose tissue (AT) function through the release of norepinephrine (NE) and beta adrenergic signaling. Sympathetic tone is determined by NE release but also by the rate of extracellular NE clearance that historically has been believed to occur solely through solute carrier family 6 member 2 (SLC6A2) expressed on sympathetic neurons. Song and colleagues show that adipocytes can also clear NE through organic cation transporter 3 (Oct3). This contributes to our understanding of how adrenergic signaling is controlled in AT and also emphasizes the need to develop better methods to assess adrenergic signaling in vivo.


Subject(s)
Catecholamines , Norepinephrine , Adipocytes , Adipose Tissue, White , Cations
6.
Proc Natl Acad Sci U S A ; 116(52): 26808-26815, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843930

ABSTRACT

The primitive neurohypophyseal nonapeptide oxytocin (OXT) has established functions in parturition, lactation, appetite, and social behavior. We have shown that OXT has direct actions on the mammalian skeleton, stimulating bone formation by osteoblasts and modulating the genesis and function of bone-resorbing osteoclasts. We deleted OXT receptors (OXTRs) selectively in osteoblasts and osteoclasts using Col2.3Cre and Acp5Cre mice, respectively. Both male and female Col2.3Cre+:Oxtrfl/fl mice recapitulate the low-bone mass phenotype of Oxtr+/- mice, suggesting that OXT has a prominent osteoblastic action in vivo. Furthermore, abolishment of the anabolic effect of estrogen in Col2.3Cre+:Oxtrfl/fl mice suggests that osteoblastic OXTRs are necessary for estrogen action. In addition, the high bone mass in Acp5Cre+:Oxtrfl/fl mice indicates a prominent action of OXT in stimulating osteoclastogenesis. In contrast, we found that in pregnant and lactating Col2.3Cre+:Oxtrfl/fl mice, elevated OXT inhibits bone resorption and rescues the bone loss otherwise noted during pregnancy and lactation. However, OXT does not contribute to ovariectomy-induced bone loss. Finally, we show that OXT acts directly on OXTRs on adipocytes to suppress the white-to-beige transition gene program. Despite this direct antibeiging action, injected OXT reduces total body fat, likely through an action on OXT-ergic neurons. Consistent with an antiobesity action of OXT, Oxt-/- and Oxtr-/- mice display increased total body fat. Overall, the actions of OXT on bone mass and body composition provide the framework for future therapies for osteoporosis and obesity.

7.
Biol Reprod ; 96(3): 617-634, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28339619

ABSTRACT

Mechanisms governing the timing of puberty in pigs are poorly understood. A genome-wide association study for age at first estrus in pigs identified candidate genes including neuropeptide FF receptor 2 (NPFFR2), which is a putative receptor for RFamide-related peptides (RFRP). RFRP has been shown to negatively regulate secretion of reproductive hormones from hypothalamic and pituitary tissue of pigs in culture. Here, the porcine NPFFR2 gene was further screened and four potentially functional variants were identified to be associated with age at first estrus in pigs (1,288 gilts). The RFRP neurons in the porcine hypothalamus were localized in the paraventricular and dorsomedial nuclei with RFRP fibers in the lateral hypothalamic area. There were marked changes in expression of NPFF receptors in the anterior pituitary gland and hypothalamus of gilts beginning with the peripubertal period. The hypothesis that NPFF receptor function is related to secretion of luteinizing hormone (LH) in gilts was tested with various NPFF receptor ligands. The NPFF receptor antagonist RF9 stimulated a pulse-like release of LH in prepubertal gilts. The putative NPFF receptor agonist RFRP3 modestly suppressed LH pulses in ovariectomized (OVX) prepubertal gilts. A porcine-specific RFRP2 failed to have an effect on LH secretion in OVX prepubertal gilts despite its high degree of homology to avian gonadotropin-inhibitory hormone. Results indicate that an RFRP system is present in the pig and that NPFFR2 is important for pubertal onset in gilts. It is not clear if this regulation involves major control of LH secretion or another unknown mechanism.


Subject(s)
Hypothalamus/metabolism , Luteinizing Hormone/metabolism , Neuropeptides/metabolism , Pituitary Gland, Anterior/metabolism , Receptors, Neuropeptide/metabolism , Sexual Maturation , Adamantane/analogs & derivatives , Animals , Dipeptides , Female , Swine
8.
Am J Physiol Regul Integr Comp Physiol ; 312(3): R324-R337, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28077392

ABSTRACT

The brain networks connected to the sympathetic motor and sensory innervations of brown (BAT) and white (WAT) adipose tissues were originally described using two transneuronally transported viruses: the retrogradely transported pseudorabies virus (PRV), and the anterogradely transported H129 strain of herpes simplex virus-1 (HSV-1 H129). Further complexity was added to this network organization when combined injections of PRV and HSV-1 H129 into either BAT or WAT of the same animal generated sets of coinfected neurons in the brain, spinal cord, and sympathetic and dorsal root ganglia. These neurons are well positioned to act as sensorimotor links in the feedback circuits that control each fat pad. We have now determined the extent of sensorimotor crosstalk between interscapular BAT (IBAT) and inguinal WAT (IWAT). PRV152 and HSV-1 H129 were each injected into IBAT or IWAT of the same animal: H129 into IBAT and PRV152 into IWAT. The reverse configuration was applied in a different set of animals. We found single-labeled neurons together with H129+PRV152 coinfected neurons in multiple brain sites, with lesser numbers in the sympathetic and dorsal root ganglia that innervate IBAT and IWAT. We propose that these coinfected neurons mediate sensory-sympathetic motor crosstalk between IBAT and IWAT. Comparing the relative numbers of coinfected neurons between the two injection configurations showed a bias toward IBAT-sensory and IWAT-sympathetic motor feedback loops. These coinfected neurons provide a neuroanatomical framework for functional interactions between IBAT thermogenesis and IWAT lipolysis that occurs with cold exposure, food restriction/deprivation, exercise, and more generally with alterations in adiposity.


Subject(s)
Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/innervation , Adipose Tissue, White/cytology , Adipose Tissue, White/innervation , Sensorimotor Cortex/cytology , Sympathetic Nervous System/cytology , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Cricetinae , Feedback, Sensory , Male , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Neurons/physiology , Phodopus , Receptor Cross-Talk , Sensorimotor Cortex/physiology , Sympathetic Nervous System/physiology
9.
Am J Physiol Regul Integr Comp Physiol ; 312(1): R132-R145, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27881398

ABSTRACT

White adipose tissue (WAT) and brown adipose tissue (BAT) are innervated and regulated by the sympathetic nervous system (SNS). It is not clear, however, whether there are shared or separate central SNS outflows to WAT and BAT that regulate their function. We injected two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer, with unique fluorescent reporters into interscapular BAT (IBAT) and inguinal WAT (IWAT) of the same Siberian hamsters to define SNS pathways to both. To test the functional importance of SNS coordinated control of BAT and WAT, we exposed hamsters with denervated SNS nerves to IBAT to 4°C for 16-24 h and measured core and fat temperatures and norepinephrine turnover (NETO) and uncoupling protein 1 (UCP1) expression in fat tissues. Overall, there were more SNS neurons innervating IBAT than IWAT across the neuroaxis. However, there was a greater percentage of singly labeled IWAT neurons in midbrain reticular nuclei than singly labeled IBAT neurons. The hindbrain had ~30-40% of doubly labeled neurons while the forebrain had ~25% suggesting shared SNS circuitry to BAT and WAT across the brain. The raphe nucleus, a key region in thermoregulation, had ~40% doubly labeled neurons. Hamsters with IBAT SNS denervation maintained core body temperature during acute cold challenge and had increased beige adipocyte formation in IWAT. They also had increased IWAT NETO, temperature, and UCP1 expression compared with intact hamsters. These data provide strong neuroanatomical and functional evidence of WAT and BAT SNS cross talk for thermoregulation and beige adipocyte formation.


Subject(s)
Adipocytes, Beige/physiology , Adipocytes/physiology , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Body Temperature Regulation/physiology , Sympathetic Nervous System/physiology , Adipocytes, Beige/cytology , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/innervation , Adipose Tissue, White/cytology , Adipose Tissue, White/innervation , Animals , Cricetinae , Feedback, Physiological/physiology , Male , Phodopus , Thermotolerance/physiology
10.
Am J Physiol Regul Integr Comp Physiol ; 313(4): R357-R371, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28747407

ABSTRACT

Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.


Subject(s)
Adipose Tissue, Brown/physiopathology , Obesity/drug therapy , Obesity/physiopathology , Oxytocin/pharmacology , Rhombencephalon/physiopathology , Thermogenesis/drug effects , Weight Loss/drug effects , Adipose Tissue, Brown/drug effects , Animals , Appetite Depressants/pharmacology , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Infusions, Intraventricular , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rhombencephalon/drug effects , Species Specificity , Treatment Outcome
11.
J Neurosci ; 35(5): 2181-90, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25653373

ABSTRACT

Brown adipose tissue (BAT) is an important source of thermogenesis which is nearly exclusively dependent on its sympathetic nervous system (SNS) innervation. We previously demonstrated the SNS outflow from brain to BAT using the retrograde SNS-specific transneuronal viral tract tracer, pseudorabies virus (PRV152) and demonstrated the sensory system (SS) inflow from BAT to brain using the anterograde SS-specific transneuronal viral tract tracer, H129 strain of herpes simplex virus-1. Several brain areas were part of both the SNS outflow to, and receive SS inflow from, interscapular BAT (IBAT) in these separate studies suggesting SNS-SS feedback loops. Therefore, we tested whether individual neurons participated in SNS-SS crosstalk by injecting both PRV152 and H129 into IBAT of Siberian hamsters. To define which dorsal root ganglia (DRG) are activated by BAT SNS stimulation, indicated by c-Fos immunoreactivity (IR), we prelabeled IBAT DRG innervating neurons by injecting the retrograde tracer Fast Blue (FB) followed 1 week later by intra-BAT injections of the specific ß3-adrenoceptor agonist CL316,243 in one pad and the vehicle in the contralateral pad. There were PRV152+H129 dually infected neurons across the neuroaxis with highest densities in the raphe pallidus nucleus, nucleus of the solitary tract, periaqueductal gray, hypothalamic paraventricular nucleus, and medial preoptic area, sites strongly implicated in the control of BAT thermogenesis. CL316,243 significantly increased IBAT temperature, afferent nerve activity, and c-Fos-IR in C2-C4 DRG neurons ipsilateral to the CL316,243 injections versus the contralateral side. The neuroanatomical reality of the SNS-SS feedback loops suggests coordinated and/or multiple redundant control of BAT thermogenesis.


Subject(s)
Adipose Tissue, Brown/innervation , Feedback, Physiological , Ganglia, Spinal/physiology , Sympathetic Nervous System/physiology , Adipose Tissue, Brown/physiology , Animals , Brain/cytology , Brain/physiology , Cricetinae , Ganglia, Spinal/cytology , Male , Neural Pathways , Neurons/physiology , Phodopus , Sympathetic Nervous System/cytology , Thermogenesis
12.
J Neurosci ; 35(11): 4571-81, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25788674

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is clinically targeted for type II diabetes treatment; however, rosiglitazone (ROSI), a PPARγ agonist, increases food intake and body/fat mass as side-effects. Mechanisms for these effects and the role of PPARγ in feeding are not understood. Therefore, we tested this role in Siberian hamsters, a model of human energy balance, and C57BL/6 mice. We tested the following: (1) how ROSI and/or GW9662 (2-chloro-5-nitro-N-phenylbenzamide; PPARγ antagonist) injected intraperitoneally or into the third ventricle (3V) affected Siberian hamster feeding behaviors; (2) whether food deprivation (FD) co-increases agouti-related protein (AgRP) and PPARγ mRNA expression in Siberian hamsters and mice; (3) whether intraperitoneally administered ROSI increases AgRP and NPY in ad libitum-fed animals; (4) whether intraperitoneally administered PPARγ antagonism blocks FD-induced increases in AgRP and NPY; and finally, (5) whether intraperitoneally administered PPARγ modulation affects plasma ghrelin. Third ventricular and intraperitoneally administered ROSI increased food hoarding and intake for 7 d, an effect attenuated by 3V GW9662, and also prevented (intraperitoneal) FD-induced feeding. FD hamsters and mice increased AgRP within the arcuate hypothalamic nucleus with concomitant increases in PPARγ exclusively within AgRP/NPY neurons. ROSI increased AgRP and NPY similarly to FD, and GW9662 prevented FD-induced increases in AgRP and NPY in both species. Neither ROSI nor GW9662 affected plasma ghrelin. Thus, we demonstrated that PPARγ activation is sufficient to trigger food hoarding/intake, increase AgRP/NPY, and possibly is necessary for FD-induced increases in feeding and AgRP/NPY. These findings provide initial evidence that FD-induced increases in AgRP/NPY may be a direct PPARγ-dependent process that controls ingestive behaviors.


Subject(s)
Agouti-Related Protein/biosynthesis , Arcuate Nucleus of Hypothalamus/metabolism , Feeding Behavior/physiology , Neuropeptide Y/biosynthesis , PPAR gamma/biosynthesis , RNA, Messenger/biosynthesis , Animals , Cricetinae , Feeding Behavior/psychology , Mice , Mice, Inbred C57BL , Phodopus
13.
Am J Physiol Regul Integr Comp Physiol ; 310(3): R275-85, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26561646

ABSTRACT

The stomach-derived "hunger hormone" ghrelin increases in the circulation in direct response to time since the last meal, increasing preprandially and falling immediately following food consumption. We found previously that peripheral injection of ghrelin potently stimulates food foraging (FF), food hoarding (FH), and food intake (FI) in Siberian hamsters. It remains, however, largely unknown if central ghrelin stimulation is necessary/sufficient to increase these behaviors regardless of peripheral stimulation of the ghrelin receptor [growth hormone secretagogue receptor (GHSR)]. We injected three doses (0.01, 0.1, and 1.0 µg) of ghrelin into the third ventricle (3V) of Siberian hamsters and measured changes in FF, FH, and FI. To test the effects of 3V ghrelin receptor blockade, we used the potent GHSR antagonist JMV2959 to block these behaviors in response to food deprivation or a peripheral ghrelin challenge. Finally, we examined neuronal activation in the arcuate nucleus and paraventricular hypothalamic nucleus in response to peripheral ghrelin administration and 3V GHSR antagonism. Third ventricular ghrelin injection significantly increased FI through 24 h and FH through day 4. Pretreatment with 3V JMV2959 successfully blocked peripheral ghrelin-induced increases in FF, FH, and FI at all time points and food deprivation-induced increases in FF, FH, and FI up to 4 h. c-Fos immunoreactivity was significantly reduced in the paraventricular hypothalamic nucleus, but not in the arcuate nucleus, following pretreatment with intraperitoneal JMV2959 and ghrelin. Collectively, these data suggest that central GHSR activation is both necessary and sufficient to increase appetitive and consummatory behaviors in Siberian hamsters.


Subject(s)
Appetitive Behavior/drug effects , Consummatory Behavior/drug effects , Eating/drug effects , Feeding Behavior/drug effects , Ghrelin/administration & dosage , Glycine/analogs & derivatives , Paraventricular Hypothalamic Nucleus/drug effects , Receptors, Ghrelin/agonists , Receptors, Ghrelin/antagonists & inhibitors , Triazoles/administration & dosage , Animals , Food Deprivation , Glycine/administration & dosage , Injections, Intraperitoneal , Injections, Intraventricular , Male , Paraventricular Hypothalamic Nucleus/metabolism , Phodopus , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Ghrelin/metabolism , Time Factors
14.
Front Neuroendocrinol ; 35(4): 473-93, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24736043

ABSTRACT

White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on ß-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.


Subject(s)
Adipose Tissue, White/metabolism , Lipid Metabolism/physiology , Lipolysis/physiology , Norepinephrine/metabolism , Sympathetic Nervous System/metabolism , Animals , Humans , Insulin/metabolism
15.
Horm Behav ; 70: 22-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25647158

ABSTRACT

Seasonal responses of many animal species are triggered by changes in daylength and its transduction into a neuroendocrine signal by the pineal gland through the nocturnal duration of melatonin (MEL) release. The precise central sites necessary to receive, transduce, and relay the short day (SD) fall-winter MEL signals into seasonal responses and changes in physiology and behavior are unclear. In Siberian hamsters, SDs trigger decreases in body and lipid mass, testicular regression and pelage color changes. Several candidate genes and their central sites of expression have been proposed as components of the MEL transduction system with considerable recent focus on the arcuate nucleus (ARC) and its component, the dorsomedial posterior arcuate nucleus (dmpARC). This site has been postulated as a critical relay of SD information through the modulation of a variety of neurochemicals/receptors important for the control of energy balance. Here the necessity of an intact dmpARC for SD responses was tested by making electrolytic lesions of the Siberian hamster dmpARC and then exposing them to either long days (LD) or SDs for 12wks. The SD typical decreases in body and fat mass, food intake, testicular volume, serum testosterone concentrations, pelage color change and increased UCP-1 protein expression (a proxy for brown adipose tissue thermogenesis) all occurred despite the lack of an intact dmpARC. Although the Siberian hamster dmpARC contains photoperiod-modulated constituents, these data demonstrate that an intact dmpARC is not necessary for SD responses and not integral to the seasonal energy- and reproductive-related responses measured here.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Photoperiod , Animals , Body Weight/physiology , Circadian Rhythm/physiology , Cricetinae , Eating/physiology , Energy Metabolism/physiology , Female , Hair Color , Ion Channels/metabolism , Male , Melatonin/metabolism , Mitochondrial Proteins/metabolism , Phodopus , Pineal Gland/metabolism , Seasons , Testis/physiology , Testosterone/blood , Uncoupling Protein 1
16.
Am J Physiol Regul Integr Comp Physiol ; 306(12): R886-900, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24717676

ABSTRACT

We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (~50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions.


Subject(s)
Adipose Tissue, White/innervation , Adipose Tissue, White/physiology , Feedback, Sensory/physiology , Sympathetic Nervous System/physiology , Animals , Brain/virology , Cricetinae , Herpesvirus 1, Human/physiology , Lipolysis/physiology , Male , Models, Animal , Neurons/virology , Phodopus
17.
J Endocrinol ; 262(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579764

ABSTRACT

The pituitary gland orchestrates multiple endocrine organs by secreting tropic hormones, and therefore plays a significant role in a myriad of physiological processes, including skeletal modeling and remodeling, fat and glucose metabolism, and cognition. Expression of receptors for each pituitary hormone and the hormone itself in the skeleton, fat, immune cells, and the brain suggest that their role is much broader than the traditionally attributed functions. FSH, believed solely to regulate gonadal function is also involved in fat and bone metabolism, as well as in cognition. Our emerging understanding of nonreproductive functions of FSH, thus, opens potential therapeutic opportunities to address detrimental health consequences during and after menopause, namely, osteoporosis, obesity, and dementia. In this review, we outline current understanding of the cross-talk between the pituitary, bone, adipose tissue, and brain through FSH. Preclinical evidence from genetic and pharmacologic interventions in rodent models, and human data from population-based observations, genetic studies, and a small number of interventional studies provide compelling evidence for independent functions of FSH in bone loss, fat gain, and congnitive impairment.


Subject(s)
Bone and Bones , Brain , Follicle Stimulating Hormone , Humans , Brain/metabolism , Brain/physiology , Animals , Follicle Stimulating Hormone/metabolism , Bone and Bones/metabolism , Bone and Bones/physiology , Adipose Tissue/metabolism , Adipose Tissue/physiology , Pituitary Gland/metabolism , Pituitary Gland/physiology , Osteoporosis/metabolism
18.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963696

ABSTRACT

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.


Subject(s)
Bone and Bones , Brain , Sympathetic Nervous System , Animals , Sympathetic Nervous System/physiology , Mice , Brain/physiology , Brain/metabolism , Bone and Bones/innervation , Bone and Bones/physiology , Herpesvirus 1, Suid/physiology
19.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370676

ABSTRACT

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow--these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.

20.
Res Sq ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38463956

ABSTRACT

Alzheimer's disease (AD) is a major progressive neurodegenerative disorder of the aging population. High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of AD, and we have shown recently that FSH directly activates the hippocampal Fshr to drive AD-like pathology and memory loss in mice. To establish a role for FSH in memory loss, we used female 3xTg;Fshr+/+, 3xTg;Fshr+/- and 3xTg;Fshr-/- mice that were either left unoperated or underwent sham surgery or ovariectomy at 8 weeks of age. Unoperated and sham-operated 3xTg;Fshr-/- mice were implanted with 17ß-estradiol pellets to normalize estradiol levels. Morris Water Maze and Novel Object Recognition behavioral tests were performed to study deficits in spatial and recognition memory, respectively, and to examine the effects of Fshr depletion. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age; both the acquisition and retrieval of the memory were ameliorated in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice- -thus documenting a clear gene-dose-dependent prevention of hippocampal-dependent spatial memory impairment. At 5 and 10 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the acquasition and/or retrieval phases, suggesting that Fshr deletion prevented the progression of spatial memory deficits with age. However, this prevention was not seen when mice were ovariectomized, except in the 10-month-old 3xTg;Fshr-/- mice. In the Novel Object Recognition test performed at 10 months, all groups of mice, except ovariectomized 3xTg;Fshr-/- mice showed a loss of recognition memory. Consistent with the neurobehavioral data, there was a gene-dose-dependent reduction mainly in the amyloid ß40 isoform in whole brain extracts. Finally, serum FSH levels < 8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial and recognition memory deficits in mice, and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of cognitive decline in postmenopausal women.

SELECTION OF CITATIONS
SEARCH DETAIL