Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Publication year range
1.
Clin Immunol ; 246: 109181, 2023 01.
Article in English | MEDLINE | ID: mdl-36356849

ABSTRACT

Nuclear factor κ light-chain enhancer of activated B cells (NF-κB) family of evolutionarily conserved transcription factors are involved in key cellular signaling pathways. Previously, hypogammaglobulinemia and common variable immunodeficiency (CVID)-like phenotypes have been associated with NFKB1 variants and loss-of-function NFKB1 variants have been reported as the most common monogenic cause for CVID among Europeans. Here, we describe a Finnish cohort of NFKB1 carriers consisting of 31 living subjects in six different families carrying five distinct heterozygous variants. In contrast to previous reports, the clinical penetrance was not complete even with advancing age and the prevalence of CVID/hypogammaglobulinemia was significantly lower, whereas (auto)inflammatory manifestations were more common (42% of the total cohort). At current stage of knowledge, routine genetic screening of asymptomatic individuals is not recommended, but counseling of potential adult carriers seems necessary.


Subject(s)
Common Variable Immunodeficiency , Immunologic Deficiency Syndromes , NF-kappa B , Humans , Agammaglobulinemia , Common Variable Immunodeficiency/genetics , Follow-Up Studies , Immunologic Deficiency Syndromes/genetics , NF-kappa B/genetics , NF-kappa B p50 Subunit/genetics
2.
J Clin Immunol ; 43(5): 1007-1018, 2023 07.
Article in English | MEDLINE | ID: mdl-36892687

ABSTRACT

Loss-of-function (LOF) mutations in NFKB1, coding for p105, may cause common variable immunodeficiency due to dysregulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κΒ) pathway. Monoallelic LOF variants of NFKB1 can predispose to uncontrolled inflammation including sterile necrotizing fasciitis or pyoderma gangrenosum. In this study, we explored the impact of a heterozygous NFKB1 c.C936T/p.R157X LOF variant on immunity in sterile fasciitis patients and their family members. The p50 or p105 protein levels were reduced in all variant carriers. Interleukin-1ß (IL-1ß) and interleukin-8 (IL-8) levels were elevated in vitro, potentially contributing to the very high neutrophil counts observed during fasciitis episodes. Phosphorylation of p65/RelA was reduced in p.R157X neutrophils suggesting defective activation of canonical NF-κB. Oxidative burst after NF-κB-independent phorbol 12-myristate 13-acetate (PMA) stimulation was similar in both p.R157X and control neutrophils. Comparable amounts of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex subunits were found in p.R157X and control neutrophils. However, a compromised oxidative burst was observed in p.R157X neutrophils following activation of NF-κB-dependent mechanisms following stimulation of toll-like receptor 2 (TLR2) and Dectin-1. Neutrophil extracellular trap formation was not affected by p.R157X. In summary, the NFKB1 c.C936T/p.R157X LOF variant has an impact on inflammation and neutrophil function and may play a role in the pathogenesis of sterile necrotizing fasciitis.


Subject(s)
Fasciitis, Necrotizing , NF-kappa B , Humans , NF-kappa B/metabolism , Neutrophils/metabolism , Fasciitis, Necrotizing/genetics , Respiratory Burst , Inflammation/genetics , Inflammation/metabolism , NF-kappa B p50 Subunit/genetics
3.
Blood ; 137(15): 2033-2045, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33513601

ABSTRACT

Exocytosis of cytotoxic granules (CG) by lymphocytes is required for the elimination of infected and malignant cells. Impairments in this process underly a group of diseases with dramatic hyperferritinemic inflammation termed hemophagocytic lymphohistiocytosis (HLH). Although genetic and functional studies of HLH have identified proteins controlling distinct steps of CG exocytosis, the molecular mechanisms that spatiotemporally coordinate CG release remain partially elusive. We studied a patient exhibiting characteristic clinical features of HLH associated with markedly impaired cytotoxic T lymphocyte (CTL) and natural killer (NK) cell exocytosis functions, who beared biallelic deleterious mutations in the gene encoding the small GTPase RhoG. Experimental ablation of RHOG in a model cell line and primary CTLs from healthy individuals uncovered a hitherto unappreciated role of RhoG in retaining CGs in the vicinity of the plasma membrane (PM), a fundamental prerequisite for CG exocytotic release. We discovered that RhoG engages in a protein-protein interaction with Munc13-4, an exocytosis protein essential for CG fusion with the PM. We show that this interaction is critical for docking of Munc13-4+ CGs to the PM and subsequent membrane fusion and release of CG content. Thus, our study illuminates RhoG as a novel essential regulator of human lymphocyte cytotoxicity and provides the molecular pathomechanism behind the identified here and previously unreported genetically determined form of HLH.


Subject(s)
Killer Cells, Natural/pathology , Lymphohistiocytosis, Hemophagocytic/genetics , T-Lymphocytes, Cytotoxic/pathology , rho GTP-Binding Proteins/genetics , Cell Line , Cells, Cultured , Gene Deletion , Germ-Line Mutation , Humans , Infant , Killer Cells, Natural/metabolism , Lymphohistiocytosis, Hemophagocytic/pathology , Male , Models, Molecular , T-Lymphocytes, Cytotoxic/metabolism , rho GTP-Binding Proteins/chemistry
4.
J Allergy Clin Immunol ; 148(2): 599-611, 2021 08.
Article in English | MEDLINE | ID: mdl-33662367

ABSTRACT

BACKGROUND: Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE: We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS: Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS: Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS: Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.


Subject(s)
Blindness, Cortical , Formins , Microcephaly , Mitochondrial Diseases , Seizures , Severe Combined Immunodeficiency , Adult , Blindness, Cortical/genetics , Blindness, Cortical/immunology , Blindness, Cortical/pathology , Child , Child, Preschool , Female , Finland , Formins/deficiency , Formins/immunology , Humans , Male , Microcephaly/genetics , Microcephaly/immunology , Microcephaly/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Mitochondrial Diseases/pathology , Oman , Seizures/genetics , Seizures/immunology , Seizures/pathology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , Syndrome
5.
J Clin Immunol ; 41(7): 1633-1647, 2021 10.
Article in English | MEDLINE | ID: mdl-34324127

ABSTRACT

PURPOSE: Deficiency of adenosine deaminase 2 (DADA2) is an inherited inborn error of immunity, characterized by autoinflammation (recurrent fever), vasculopathy (livedo racemosa, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency, lymphoproliferation, immune cytopenias, and bone marrow failure (BMF). Tumor necrosis factor (TNF-α) blockade is the treatment of choice for the vasculopathy, but often fails to reverse refractory cytopenia. We aimed to study the outcome of hematopoietic cell transplantation (HCT) in patients with DADA2. METHODS: We conducted a retrospective study on the outcome of HCT in patients with DADA2. The primary outcome was overall survival (OS). RESULTS: Thirty DADA2 patients from 12 countries received a total of 38 HCTs. The indications for HCT were BMF, immune cytopenia, malignancy, or immunodeficiency. Median age at HCT was 9 years (range: 2-28 years). The conditioning regimens for the final transplants were myeloablative (n = 20), reduced intensity (n = 8), or non-myeloablative (n = 2). Donors were HLA-matched related (n = 4), HLA-matched unrelated (n = 16), HLA-haploidentical (n = 2), or HLA-mismatched unrelated (n = 8). After a median follow-up of 2 years (range: 0.5-16 years), 2-year OS was 97%, and 2-year GvHD-free relapse-free survival was 73%. The hematological and immunological phenotypes resolved, and there were no new vascular events. Plasma ADA2 enzyme activity normalized in 16/17 patients tested. Six patients required more than one HCT. CONCLUSION: HCT was an effective treatment for DADA2, successfully reversing the refractory cytopenia, as well as the vasculopathy and immunodeficiency. CLINICAL IMPLICATIONS: HCT is a definitive cure for DADA2 with > 95% survival.


Subject(s)
Agammaglobulinemia/therapy , Bone Marrow Failure Disorders/therapy , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency/therapy , Adenosine Deaminase/deficiency , Adolescent , Adult , Agammaglobulinemia/enzymology , Agammaglobulinemia/genetics , Agammaglobulinemia/mortality , Bone Marrow Failure Disorders/enzymology , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/mortality , Child , Child, Preschool , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Intercellular Signaling Peptides and Proteins/deficiency , Kaplan-Meier Estimate , Male , Retrospective Studies , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/mortality , Treatment Outcome , Young Adult
6.
J Clin Rheumatol ; 27(8): e583-e587, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-31977656

ABSTRACT

BACKGROUND: Tumor necrosis factor α-induced protein 3 gene (TNFAIP3, also called A20) haploinsufficiency (HA20) leads to autoinflammation and autoimmunity. We have recently shown that a p.(Lys91*) mutation in A20 disrupts nuclear factor κB signaling, impairs protein-protein interactions of A20, and leads to inflammasome activation. METHODS: We now describe the clinical presentations and drug responses in a family with HA20 p.(Lys91*) mutation, consistent with our previously reported diverse immunological and functional findings. RESULTS: We report for the first time that inflammasome-mediated autoinflammatory lung reaction caused by HA20 can be treated with interleukin 1 antagonist anakinra. We also describe severe anemia related to HA20 successfully treated with mycophenolate. In addition, HA20 p.(Lys91*) was found to associate with autoimmune thyroid disease, juvenile idiopathic arthritis, psoriasis, liver disease, and immunodeficiency presenting with specific antibody deficiency and genital papillomatosis. CONCLUSIONS: We conclude that HA20 may lead to combination of inflammation, immunodeficiency, and autoimmunity. The condition may present with variable and unpredictable symptoms with atypical treatment responses.


Subject(s)
Arthritis, Juvenile , Haploinsufficiency , Autoimmunity , Humans , Mutation , NF-kappa B
7.
J Clin Immunol ; 40(8): 1156-1162, 2020 11.
Article in English | MEDLINE | ID: mdl-32936395

ABSTRACT

Puumala hantavirus (PUUV) hemorrhagic fever with renal syndrome (HFRS) is common in Northern Europe; this infection is usually self-limited and severe complications are uncommon. PUUV and other hantaviruses, however, can rarely cause encephalitis. The pathogenesis of these rare and severe events is unknown. In this study, we explored the possibility that genetic defects in innate anti-viral immunity, as analogous to Toll-like receptor 3 (TLR3) mutations seen in HSV-1 encephalitis, may explain PUUV encephalitis. We completed exome sequencing of seven adult patients with encephalitis or encephalomyelitis during acute PUUV infection. We found heterozygosity for the TLR3 p.L742F novel variant in two of the seven unrelated patients (29%, p = 0.0195). TLR3-deficient P2.1 fibrosarcoma cell line and SV40-immortalized fibroblasts (SV40-fibroblasts) from patient skin expressing mutant or wild-type TLR3 were tested functionally. The TLR3 p.L742F allele displayed low poly(I:C)-stimulated cytokine induction when expressed in P2.1 cells. SV40-fibroblasts from three healthy controls produced increasing levels of IFN-λ and IL-6 after 24 h of stimulation with increasing concentrations of poly(I:C), whereas the production of the cytokines was impaired in TLR3 L742F/WT patient SV40-fibroblasts. Heterozygous TLR3 mutation may underlie not only HSV-1 encephalitis but also PUUV hantavirus encephalitis. Such possibility should be further explored in encephalitis caused by these and other hantaviruses.


Subject(s)
Encephalitis, Viral/etiology , Hantavirus Infections/etiology , Heterozygote , Mutation , Orthohantavirus , Toll-Like Receptor 3/genetics , Alleles , Cell Line , Cells, Cultured , Disease Susceptibility , Encephalitis, Viral/diagnosis , Fibroblasts/immunology , Fibroblasts/metabolism , Genetic Predisposition to Disease , Orthohantavirus/immunology , Hantavirus Infections/diagnosis , Humans
8.
J Clin Immunol ; 40(3): 503-514, 2020 04.
Article in English | MEDLINE | ID: mdl-32072341

ABSTRACT

Hypomorphic IL2RG mutations may lead to milder phenotypes than X-SCID, named variably as atypical X-SCID or X-CID. We report an 11-year-old boy with a novel c. 172C>T;p.(Pro58Ser) mutation in IL2RG, presenting with atypical X-SCID phenotype. We also review the growing number of hypomorphic IL2RG mutations causing atypical X-SCID. We studied the patient's clinical phenotype, B, T, NK, and dendritic cell phenotypes, IL2RG and CD25 cell surface expression, and IL-2 target gene expression, STAT tyrosine phosphorylation, PBMC proliferation, and blast formation in response to IL-2 stimulation, as well as protein-protein interactions of the mutated IL2RG by BioID proximity labeling. The patient suffered from recurrent upper and lower respiratory tract infections, bronchiectasis, and reactive arthritis. His total lymphocyte counts have remained normal despite skewed T and B cells subpopulations, with very low numbers of plasmacytoid dendritic cells. Surface expression of IL2RG was reduced on his lymphocytes. This led to impaired STAT tyrosine phosphorylation in response to IL-2 and IL-21, reduced expression of IL-2 target genes in patient CD4+ T cells, and reduced cell proliferation in response to IL-2 stimulation. BioID proximity labeling showed aberrant interactions between mutated IL2RG and ER/Golgi proteins causing mislocalization of the mutated IL2RG to the ER/Golgi interface. In conclusion, IL2RG p.(Pro58Ser) causes X-CID. Failure of IL2RG plasma membrane targeting may lead to atypical X-SCID. We further identified another carrier of this mutation from newborn SCID screening, lost to closer scrutiny.


Subject(s)
Dendritic Cells/immunology , Interleukin Receptor Common gamma Subunit/genetics , Lymphocytes/physiology , Multiprotein Complexes/metabolism , Mutation/genetics , Receptors, Interleukin-2/metabolism , X-Linked Combined Immunodeficiency Diseases/diagnosis , Cells, Cultured , Child , Gene Expression Regulation , Hemizygote , Humans , Male , Multiprotein Complexes/genetics , Pedigree , Receptors, Interleukin-2/genetics , STAT5 Transcription Factor/metabolism , X-Linked Combined Immunodeficiency Diseases/genetics
9.
Haematologica ; 105(12): 2757-2768, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33256375

ABSTRACT

Common variable immunodeficiency and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is however implicated. To study whether somatic mutations in CD4+ and CD8+ T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset common variable immunodeficiency and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2533 immune-associated genes from CD4+ and CD8+ cells. Deep T-cell receptor beta sequencing was used to characterize CD4+ and CD8+ T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in common variable immunodeficiency and 48% in controls. Clonal hematopoiesis-associated variants in both CD4+ and CD8+ cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immune- and proliferative functions, such as STAT5B (two patients), C5AR1 (two patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, common variable immunodeficiency patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4+ and CD8+ cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients.


Subject(s)
Immunologic Deficiency Syndromes , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Complementarity Determining Regions/genetics , Humans , Mutation , Receptors, Antigen, T-Cell, alpha-beta/genetics
10.
Am J Med Genet A ; 182(11): 2605-2610, 2020 11.
Article in English | MEDLINE | ID: mdl-32902138

ABSTRACT

The multiple pterygium syndromes (MPS) are rare disorders with disease severity ranging from lethal to milder forms. The nonlethal Escobar variant MPS (EVMPS) is characterized by multiple pterygia and arthrogryposis, as well as various additional features including congenital anomalies. The genetic etiology of EVMPS is heterogeneous and the diagnosis has been based either on the detection of pathogenic CHRNG variants (~23% of patients), or suggestive clinical features. We describe four patients with a clinical suspicion of EVMPS who manifested with multiple pterygia, mild flexion contractures of several joints, and vertebral anomalies. We revealed recessively inherited MYH3 variants as the underlying cause in all patients: two novel variants, c.1053C>G, p.(Tyr351Ter) and c.3102+5G>C, as compound heterozygous with the hypomorphic MYH3 variant c.-9+1G>A. Recessive MYH3 variants have been previously associated with spondylocarpotarsal synostosis syndrome. Our findings now highlight multiple pterygia as an important feature in patients with recessive MYH3 variants. Based on all patients with recessive MYH3 variants reported up to date, we consider that this disease entity should be designated as "Contractures, pterygia, and variable skeletal fusions syndrome 1B," as recently suggested by OMIM. Our findings underline the importance of analyzing MYH3 in the differential diagnosis of EVMPS, particularly as the hypomorphic MYH3 variant might remain undetected by routine exome sequencing.


Subject(s)
Abnormalities, Multiple/genetics , Cytoskeletal Proteins/genetics , Genes, Recessive , Genetic Variation , Malignant Hyperthermia/genetics , Skin Abnormalities/genetics , Child , Child, Preschool , Contracture/genetics , Female , Gene Deletion , Heterozygote , Humans , Lordosis/genetics , Male , Mutation , Pedigree , Phenotype , Scoliosis/genetics , Sequence Analysis, DNA , Siblings , Exome Sequencing
11.
Blood ; 130(24): 2682-2688, 2017 12 14.
Article in English | MEDLINE | ID: mdl-28974505

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is caused by biallelic deleterious mutations in CECR1 DADA2 results in variable autoinflammation and vasculopathy (recurrent fevers, livedo reticularis, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency and bone marrow failure. Tumor necrosis factor-α blockade is the treatment of choice for the autoinflammation and vascular manifestations. Hematopoietic stem cell transplantation (HSCT) represents a potential definitive treatment. We present a cohort of 14 patients from 6 countries who received HSCT for DADA2. Indication for HSCT was bone marrow dysfunction or immunodeficiency. Six of 14 patients had vasculitis pre-HSCT. The median age at HSCT was 7.5 years. Conditioning regimens were myeloablative (9) and reduced intensity (5). Donors were HLA-matched sibling (n = 1), HLA-matched unrelated (n = 9), HLA-mismatched unrelated (n = 3), and HLA haploidentical sibling (n = 1). All patients are alive and well with no new vascular events and resolution of hematological and immunological phenotype at a median follow-up of 18 months (range, 5 months to 13 years). Plasma ADA2 enzyme activity normalized in those tested post-HSCT (7/7), as early as day +14 (myeloid engraftment). Post-HSCT hematological autoimmunity (cytopenias) was reported in 4 patients, acute graft-versus-host disease grade 1 in 2, grade 2 in 3, and grade 3-4 in 1, and moderate chronic graft-versus-host disease in 1 patient. In conclusion, in 14 patients, HSCT was an effective and definitive treatment of DADA2.


Subject(s)
Adenosine Deaminase/genetics , Hematopoietic Stem Cell Transplantation/methods , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Intercellular Signaling Peptides and Proteins/genetics , Mutation , Adenosine Deaminase/blood , Adenosine Deaminase/metabolism , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunologic Deficiency Syndromes/enzymology , Infant , Infant, Newborn , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/metabolism , Male , Phenotype , Transplantation Conditioning/methods
12.
Am J Med Genet A ; 179(7): 1362-1365, 2019 07.
Article in English | MEDLINE | ID: mdl-31059209

ABSTRACT

Fetal akinesia deformation sequence (FADS) and lethal multiple pterygium syndrome (LMPS) are clinically overlapping syndromes manifesting with reduced or absent fetal movement, arthrogryposis, and several anomalies during fetal life. The etiology of these syndromes is heterogeneous, and in many cases it remains unknown. In order to determine the genetic etiology of FADS in two fetuses with fetal akinesia, arthrogryposis, edema, and partial cleft palate, we utilized exome sequencing. Our investigations revealed a homozygous nonsense variant [c.1116C>A, p.(Cys372Ter)] in the SLC18A3 gene, which encodes for the vesicular acetylcholine transporter (VAChT) responsible for active transport of acetylcholine in the neuromuscular junction. This is the first description of a nonsense variant in the SLC18A3 gene, as only missense variants and whole gene deletions have been previously identified in patients. The previously detected SLC18A3 defects have been associated with congenital myasthenic syndromes, and therefore our findings extend the clinical spectrum of SLC18A3 defects to severe prenatal phenotypes. Our findings suggest that nonsense variants in SLC18A3 cause a more severe phenotype than missense variants and are in line with previous studies showing a lethal phenotype in VAChT knockout mice. Our results underline the importance of including SLC18A3 sequencing in the differential diagnostics of fetuses with arthrogryposis, FADS, or LMPS of unknown etiology.


Subject(s)
Arthrogryposis , Mutation, Missense , Vesicular Acetylcholine Transport Proteins/genetics , Animals , Female , Humans , Mice , Mice, Knockout , Pregnancy
13.
BMC Infect Dis ; 19(1): 404, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31077135

ABSTRACT

BACKGROUND: Symptomatic primary Epstein-Barr virus infection is a usually self-limiting illness in adolescents. We present a case of an adolescent who had been receiving azathioprine for inflammatory bowel disease for four years and developed a life-threatening primary Epstein-Barr virus infection successfully treated with rituximab. CASE PRESENTATION: An 11-year-old girl presented with chronic, bloody diarrhea. Endoscopic biopsies confirmed a diagnosis of chronic ulcerative colitis with features of Crohn's disease. Azathioprine was initiated after one year due to active colitis. She responded well and remission was achieved. At the age of 16 years she developed a life-threatening Epstein-Barr virus infection including severe multiple organ failure and was critically ill for 4 weeks in the intensive care unit. Natural killer cells were virtually absent in the lymphocyte subset analysis. Azathioprine was stopped on admission. She was initially treated with corticosteroids, acyclovir and intravenous immunoglobulin. Approximately 30 days after admission, she developed signs of severe hepatitis and pneumonitis and received weekly rituximab infusions for 8 weeks. Primary immunodeficiency was excluded by whole exome sequencing in two independent laboratories. Persistent viremia stopped when the natural killer cell count started to rise, approximately 90 days after the cessation of azathioprine. CONCLUSIONS: We found 17 comparable cases in the literature. None of the previous cases reported in the literature, who had been treated with azathioprine and developed either a severe or a fatal Epstein-Barr virus infection, underwent full genetic and prospective immunological workup to rule out known primary immunodeficiencies. Recently, azathioprine has been shown to cause rather specific immunosuppression, resulting in natural killer cell depletion. Our case demonstrates that slow recovery from azathioprine-induced natural killer cell depletion, 3 months after the stopping of azathioprine, coincided with the clearance of viremia and clinical recovery. Finally, our choice of treating the patient with rituximab, as previously used for patients with a severe immunosuppression and Epstein-Barr virus viremia, appeared to be successful in this case. We suggest testing for Epstein-Barr virus serology before starting azathioprine and measuring natural killer cell counts during the treatment to identify patients at risk of developing an unusually severe primary Epstein-Barr virus infection.


Subject(s)
Azathioprine/adverse effects , Epstein-Barr Virus Infections/etiology , Immunosuppressive Agents/adverse effects , Inflammatory Bowel Diseases/complications , Killer Cells, Natural , Azathioprine/therapeutic use , Biopsy , Child , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Female , Herpesvirus 4, Human/immunology , Humans , Immunosuppressive Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Killer Cells, Natural/drug effects , Lymphocyte Count , Prospective Studies , Rituximab/therapeutic use , Treatment Outcome
15.
N Engl J Med ; 372(25): 2409-22, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26083206

ABSTRACT

Background Combined immunodeficiencies are marked by inborn errors of T-cell immunity in which the T cells that are present are quantitatively or functionally deficient. Impaired humoral immunity is also common. Patients have severe infections, autoimmunity, or both. The specific molecular, cellular, and clinical features of many types of combined immunodeficiencies remain unknown. Methods We performed genetic and cellular immunologic studies involving five unrelated children with early-onset invasive bacterial and viral infections, lymphopenia, and defective T-cell, B-cell, and natural killer (NK)-cell responses. Two patients died early in childhood; after allogeneic hematopoietic stem-cell transplantation, the other three had normalization of T-cell function and clinical improvement. Results We identified biallelic mutations in the dedicator of cytokinesis 2 gene (DOCK2) in these five patients. RAC1 activation was impaired in the T cells. Chemokine-induced migration and actin polymerization were defective in the T cells, B cells, and NK cells. NK-cell degranulation was also affected. Interferon-α and interferon-λ production by peripheral-blood mononuclear cells was diminished after viral infection. Moreover, in DOCK2-deficient fibroblasts, viral replication was increased and virus-induced cell death was enhanced; these conditions were normalized by treatment with interferon alfa-2b or after expression of wild-type DOCK2. Conclusions Autosomal recessive DOCK2 deficiency is a new mendelian disorder with pleiotropic defects of hematopoietic and nonhematopoietic immunity. Children with clinical features of combined immunodeficiencies, especially with early-onset, invasive infections, may have this condition. (Supported by the National Institutes of Health and others.).


Subject(s)
Genetic Diseases, Inborn/genetics , Guanine Nucleotide Exchange Factors/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , T-Lymphocytes/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Child, Preschool , Fatal Outcome , Female , GTPase-Activating Proteins , Genes, Recessive , Genetic Diseases, Inborn/therapy , Guanine Nucleotide Exchange Factors/deficiency , Hematopoietic Stem Cell Transplantation , Humans , Immunologic Deficiency Syndromes/therapy , Infant , Killer Cells, Natural/immunology , Male , Pedigree , T-Lymphocytes/metabolism , rac1 GTP-Binding Protein/metabolism
16.
J Allergy Clin Immunol ; 140(3): 782-796, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28115215

ABSTRACT

BACKGROUND: The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE: We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS: We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS: In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION: Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.


Subject(s)
Autoimmune Diseases/genetics , Immunologic Deficiency Syndromes/genetics , NF-kappa B/genetics , Adult , Aged , Cell Line , Child , Female , Heterozygote , Humans , Inflammation/genetics , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mutation , Phenotype
18.
Blood ; 125(4): 639-48, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25349174

ABSTRACT

The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of immunodysregulation polyendocrinopathy enteropathy X-linked-like syndrome. Here, we immunologically characterized 3 patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T, and p.K658N, respectively). The patients displayed multiorgan autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B-cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4(-)CD8(-)) T cells, and decreased natural killer, T helper 17, and regulatory T-cell numbers. Notably, the patient harboring the K392R mutation developed T-cell large granular lymphocytic leukemia at age 14 years. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.


Subject(s)
Agammaglobulinemia , Autoimmune Diseases , Genetic Diseases, Inborn , Leukemia, Large Granular Lymphocytic , Mutation, Missense , Mycobacterium Infections , STAT3 Transcription Factor , Adolescent , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Agammaglobulinemia/pathology , Amino Acid Substitution , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, Inborn/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/immunology , Leukemia, Large Granular Lymphocytic/pathology , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium Infections/pathology , Protein Structure, Tertiary , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/immunology , Th17 Cells/pathology
19.
Nature ; 476(7359): 214-9, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21833088

ABSTRACT

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.


Subject(s)
Genetic Predisposition to Disease/genetics , Immunity, Cellular/immunology , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Alleles , Cell Differentiation/immunology , Europe/ethnology , Genome, Human/genetics , Genome-Wide Association Study , HLA-A Antigens/genetics , HLA-DR Antigens/genetics , HLA-DRB1 Chains , Humans , Immunity, Cellular/genetics , Major Histocompatibility Complex/genetics , Polymorphism, Single Nucleotide/genetics , Sample Size , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology
20.
Duodecim ; 133(5): 481-8, 2017.
Article in English | MEDLINE | ID: mdl-29205997

ABSTRACT

Next-generation sequencing methods have revolutionized the possibilities for analyzing the human genome. Sequencing the exome, the protein-encoding portion of the genome, is used, in clinical medicine, especially in the diagnosis of rare hereditary diseases, congenital developmental disorders and cancer. Using exome sequencing as a diagnostic test is justified when the results could lead to an accurate diagnosis, significantly influence the treatment and genetic counseling. It is a reliable method for detecting single base mutations as minor deletions and insertions. However, with current methods the reliable analysis of larger changes in the number of copies, the length or repeats and areas present in multiple copies in the genome is challenging. Every human has many mutations in their exome, and distinguishing between insignificant and pathogenic mutations is thus a key challenge when interpreting the results of exome sequencing.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Genetic Counseling , Genome, Human , Humans , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL