Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Control Release ; 372: 281-294, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876359

ABSTRACT

Short chain fatty acid (SCFAs), such as butyrate, have shown promising therapeutic potential due to their immunomodulatory effects, particularly in maintaining immune homeostasis. However, the clinical application of SCFAs is limited by the need for frequent and high oral dosages. Rheumatoid arthritis (RA) is characterized by aberrant activation of peripheral T cells and myeloid cells. In this study, we aimed to deliver butyrate directly to the lymphatics using a polymeric micelle-based butyrate prodrug to induce long-lasting immunomodulatory effects. Notably, negatively charged micelles (Neg-ButM) demonstrated superior efficacy in targeting the lymphatics following subcutaneous (s.c.) administration and were retained in the draining lymph nodes, spleen, and liver for over one month. In the collagen antibody-induced arthritis (CAIA) mouse model of RA, only two s.c. injections of Neg-ButM successfully prevented disease onset and promoted tolerogenic phenotypes in T cells and myeloid cells, both locally and systemically. These results underscore the potential of this strategy in managing inflammatory autoimmune diseases by directly modulating immune responses via lymphatic delivery.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Butyrates , Micelles , Prodrugs , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/prevention & control , Butyrates/administration & dosage , Butyrates/pharmacology , Butyrates/chemistry , Prodrugs/administration & dosage , Prodrugs/therapeutic use , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/drug therapy , Mice , Immunomodulating Agents/administration & dosage , Immunomodulating Agents/pharmacology , Mice, Inbred DBA , Female , Male , Mice, Inbred C57BL
2.
Cell Rep Med ; 5(1): 101346, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38128531

ABSTRACT

The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified ß-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.


Subject(s)
Anaphylaxis , Food Hypersensitivity , Milk Hypersensitivity , Vaccines , Mice , Animals , Female , Cattle , Anaphylaxis/prevention & control , Glycosylation , Food Hypersensitivity/prevention & control , Milk Hypersensitivity/prevention & control , Lactoglobulins/metabolism
3.
Nat Biomed Eng ; 7(1): 38-55, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36550307

ABSTRACT

The microbiome modulates host immunity and aids the maintenance of tolerance in the gut, where microbial and food-derived antigens are abundant. Yet modern dietary factors and the excessive use of antibiotics have contributed to the rising incidence of food allergies, inflammatory bowel disease and other non-communicable chronic diseases associated with the depletion of beneficial taxa, including butyrate-producing Clostridia. Here we show that intragastrically delivered neutral and negatively charged polymeric micelles releasing butyrate in different regions of the intestinal tract restore barrier-protective responses in mouse models of colitis and of peanut allergy. Treatment with the butyrate-releasing micelles increased the abundance of butyrate-producing taxa in Clostridium cluster XIVa, protected mice from an anaphylactic reaction to a peanut challenge and reduced disease severity in a T-cell-transfer model of colitis. By restoring microbial and mucosal homoeostasis, butyrate-releasing micelles may function as an antigen-agnostic approach for the treatment of allergic and inflammatory diseases.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Peanut Hypersensitivity , Mice , Animals , Micelles , Butyrates
SELECTION OF CITATIONS
SEARCH DETAIL