Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
FASEB J ; 34(6): 7330-7344, 2020 06.
Article in English | MEDLINE | ID: mdl-32304342

ABSTRACT

Our understanding of the molecular mechanisms underlying adaptations to resistance exercise remains elusive despite the significant biological and clinical relevance. We developed a novel voluntary mouse weightlifting model, which elicits squat-like activities against adjustable load during feeding, to investigate the resistance exercise-induced contractile and metabolic adaptations. RNAseq analysis revealed that a single bout of weightlifting induced significant transcriptome responses of genes that function in posttranslational modification, metabolism, and muscle differentiation in recruited skeletal muscles, which were confirmed by increased expression of fibroblast growth factor-inducible 14 (Fn14), Down syndrome critical region 1 (Dscr1) and Nuclear receptor subfamily 4, group A, member 3 (Nr4a3) genes. Long-term (8 weeks) voluntary weightlifting training resulted in significantly increases of muscle mass, protein synthesis (puromycin incorporation in SUnSET assay) and mTOR pathway protein expression (raptor, 4e-bp-1, and p70S6K proteins) along with enhanced muscle power (specific torque and contraction speed), but not endurance capacity, mitochondrial biogenesis, and fiber type transformation. Importantly, weightlifting training profound improved whole-body glucose clearance and skeletal muscle insulin sensitivity along with enhanced autophagy (increased LC3 and LC3-II/I ratio, and decreased p62/Sqstm1). These data suggest that resistance training in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway.


Subject(s)
Adaptation, Physiological/physiology , Autophagy/physiology , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Muscle Contraction/physiology , Organelle Biogenesis , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
2.
STAR Protoc ; 2(3): 100768, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34467232

ABSTRACT

This protocol describes the application of the "omnigenic" model of the genetic architecture of complex traits to identify novel "core" genes influencing a disease-associated phenotype. Core genes are hypothesized to directly regulate disease and may serve as therapeutic targets. This protocol leverages GWAS data, a co-expression network, and publicly available data, including the GTEx database and the International Mouse Phenotyping Consortium Database, to identify modules enriched for genes with "core-like" characteristics. For complete details on the use and execution of this protocol, please refer to Sabik et al. (2020).


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Genome-Wide Association Study/methods , Animals , Gene Ontology , Genome-Wide Association Study/statistics & numerical data , Linkage Disequilibrium , Mice , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, RNA
3.
J Appl Physiol (1985) ; 130(3): 605-616, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33332990

ABSTRACT

Parental health influences embryonic development and susceptibility to disease in the offspring. We investigated whether maternal voluntary running during gestation could protect the offspring from the adverse effects of maternal or paternal high-fat diet (HF) in mice. We performed transcriptomic and whole-genome DNA methylation analyses in female offspring skeletal muscle and targeted DNA methylation analysis of the peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) promoter in both male and female adult offspring. Maternal HF resulted in impaired metabolic homeostasis in male offspring at 9 mo of age, whereas both male and female offspring were negatively impacted by paternal HF. Maternal exercise during gestation completely mitigated these metabolic impairments. Female adult offspring from obese male or female parent had skeletal muscle transcriptional profiles enriched in genes regulating inflammation and immune responses, whereas maternal exercise resulted in a transcriptional profile similar to offspring from normal chow (NC)-fed parents. Maternal HF, but not paternal HF, resulted in hypermethylation of the Pgc-1α promoter at CpG-260, which was abolished by maternal exercise. These findings demonstrate the negative consequences of maternal and paternal HF for the offspring's metabolic outcomes later in life possibly through different epigenetic mechanisms, and maternal exercise during gestation mitigates the negative consequences.NEW & NOTEWORTHY Maternal or paternal obesity causes metabolic impairment in adult offspring in mice. Maternal exercise during gestation can completely mitigate metabolic impairment. Maternal obesity, but not paternal obesity, results in hypermethylation of the Pgc-1α promoter at CpG-260, which can be abolished by maternal exercise.


Subject(s)
Physical Conditioning, Animal , Prenatal Exposure Delayed Effects , Adult Children , Animals , Diet, High-Fat , Female , Humans , Male , Mice , Obesity , Parents , Pregnancy
4.
Cell Rep ; 32(11): 108145, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937138

ABSTRACT

The "omnigenic" model of the genetic architecture of complex traits proposed two categories of causal genes: core and peripheral. Core genes are hypothesized to directly regulate disease and may serve as therapeutic targets. Using a cell-type- and time-point-specific gene co-expression network for mineralizing osteoblasts, we identify a co-expression module enriched for genes implicated by bone mineral density (BMD) genome-wide association studies (GWASs), correlated with in vitro osteoblast mineralization and associated with skeletal phenotypes in human monogenic disease and mouse knockouts. Four genes from this module (B4GALNT3, CADM1, DOCK9, and GPR133) are located within the BMD GWAS loci with colocalizing expression quantitative trait loci (eQTL) and exhibit altered BMD in mouse knockouts, suggesting that they are causal genetic drivers of BMD in humans. Our network-based approach identifies a "core" module for BMD and provides a resource for expanding our understanding of the genetics of bone mass.


Subject(s)
Bone Density/genetics , Gene Expression Regulation , Gene Regulatory Networks , Genome-Wide Association Study , Animals , Animals, Newborn , Calcification, Physiologic/genetics , Cell Differentiation/genetics , Humans , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Transcription, Genetic , Transcriptome/genetics
5.
JBMR Plus ; 3(12): e10241, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31844829

ABSTRACT

Our understanding of the genetic control of bone strength has relied mainly on estimates of bone mineral density. Here we have mapped genetic factors that influence femoral and tibial microarchitecture using high-resolution x-ray computed tomography (8-µm isotropic voxels) across a family of 61 BXD strains of mice, roughly 10 isogenic cases per strain and balanced by sex. We computed heritabilities for 25 cortical and trabecular traits. Males and females have well-matched heritabilities, ranging from 0.25 to 0.75. We mapped 16 genetic loci most of which were detected only in females. There is also a bias in favor of loci that control cortical rather than trabecular bone. To evaluate candidate genes, we combined well-established gene ontologies with bone transcriptome data to compute bone-enrichment scores for all protein-coding genes. We aligned candidates with those of human genome-wide association studies. A subset of 50 strong candidates fell into three categories: (1) experimentally validated genes already known to modulate bone function (Adamts4, Ddr2, Darc, Adam12, Fkbp10, E2f6, Adam17, Grem2, Ifi204); (2) candidates without any experimentally validated function in bone (eg, Greb1, Ifi202b), but linked to skeletal phenotypes in human cohorts; and (3) candidates that have high bone-enrichment scores, but for which there is not yet any functional link to bone biology or skeletal system disease (including Ifi202b, Ly9, Ifi205, Mgmt, F2rl1, Iqgap2). Our results highlight contrasting genetic architecture between sexes and among major bone compartments. The alignment of murine and human data facilitates function analysis and should prove of value for preclinical testing of molecular control of bone structure. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

6.
Transl Res ; 181: 15-26, 2017 03.
Article in English | MEDLINE | ID: mdl-27837649

ABSTRACT

Osteoporosis is a common, increasingly prevalent, global health burden characterized by low bone mineral density (BMD) and increased risk of fracture. Despite its significant impact on human health, there is currently a lack of highly effective treatments free of side effects for osteoporosis. Therefore, a major goal in the field is to identify new drug targets. Genetic discovery has been shown to be effective in the unbiased identification of novel drug targets and genome-wide association studies (GWASs) have begun to provide insight into genetic basis of osteoporosis. Over the last decade, GWASs have led to the identification of ∼100 loci associated with BMD and other bone traits related to risk of fracture. However, there have been limited efforts to identify the causal genes underlying the GWAS loci or the mechanisms by which GWAS loci alter bone physiology. In this review, we summarize the current state of the field and discuss strategies for causal gene discovery and the evidence that the novel genes underlying GWAS loci are likely to be a new source of drug targets.


Subject(s)
Genome-Wide Association Study , Molecular Targeted Therapy , Osteoporosis/genetics , Osteoporosis/therapy , Gene Regulatory Networks , Genomics , Humans , Quantitative Trait, Heritable
7.
G3 (Bethesda) ; 7(3): 865-870, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28082324

ABSTRACT

Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2 In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry.


Subject(s)
Femur/anatomy & histology , Quantitative Trait Loci/genetics , Alleles , Animals , Body Height/genetics , Chromosome Mapping , Female , Gene Expression Regulation , Genome-Wide Association Study , Humans , Lod Score , Male , Mice, Inbred C57BL , Organ Size/genetics , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL