ABSTRACT
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Carcinoma, Renal Cell , Chromosomes, Human, X , Kidney Neoplasms , Translocation, Genetic , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Female , Translocation, Genetic/genetics , Chromosomes, Human, X/genetics , Male , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Sex Characteristics , Haplotypes/geneticsABSTRACT
The aberrant localization of proteins in cells is a key factor in the development of various diseases, including cancer and neurodegenerative disease. To better understand and potentially manipulate protein localization for therapeutic purposes, we engineered bifunctional compounds that bind to proteins in separate cellular compartments. We show these compounds induce nuclear import of cytosolic cargoes, using nuclear-localized BRD4 as a "carrier" for co-import and nuclear trapping of cytosolic proteins. We use this system to calculate kinetic constants for passive diffusion across the nuclear pore and demonstrate single-cell heterogeneity in response to these bifunctional molecules with cells requiring high carrier to cargo expression for complete import. We also observe incorporation of cargo into BRD4-containing condensates. Proteins shown to be substrates for nuclear transport include oncogenic mutant nucleophosmin (NPM1c) and mutant PI3K catalytic subunit alpha (PIK3CAE545K), suggesting potential applications to cancer treatment. In addition, we demonstrate that chemically induced localization of BRD4 to cytosolic-localized DNA-binding proteins, namely, IRF1 with a nuclear export signal, induces target gene expression. These results suggest that induced localization of proteins with bifunctional molecules enables the rewiring of cell circuitry, with significant implications for disease therapy.
Subject(s)
Neurodegenerative Diseases , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Cell Nucleus/metabolism , Neurodegenerative Diseases/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Cell Cycle Proteins/metabolismABSTRACT
BACKGROUND: Patient-derived xenograft (PDX) mouse models of cancer have been recognized as better mouse models that recapitulate the characteristics of original malignancies including preserved tumor heterogeneity, lineage hierarchy, and tumor microenvironment. However, common challenges of PDX models are the significant time required for tumor expansion, reduced tumor take rates, and higher costs. Here, we describe a fast, simple, and cost-effective method of expanding PDX of pancreatic ductal adenocarcinoma (PDAC) in mice. METHODS: We used two established frozen PDAC PDX tissues (derived from two different patients) and implanted them subcutaneously into SCID mice. After tissues reached 10-20 mm in diameter, we performed survival surgery on each mouse to harvest 90-95% of subcutaneous PDX (incomplete resection), allowing the remaining 5-10% of PDX to continue growing in the same mouse. RESULTS: We expanded three consecutive passages (P1, P2, and P3) of PDX in the same mouse. Comparing the times required for in vivo expansion, P2 and P3 (expanded through incomplete resection) grew 26-60% faster than P1. Moreover, such expanded PDX tissues were successfully implanted orthotopically into mouse pancreases. Within 20 weeks using only 14 mice, we generated sufficient PDX tissue for future implantation of 200 mice. Our histology study confirmed that the morphologies of cancer cells and stromal structures were similar across all three passages of subcutaneous PDX and the orthotopic PDX and were reflective of the original patient tumors. CONCLUSIONS: Taking advantage of incomplete resection of tumors associated with high local recurrence, we established a fast method of PDAC PDX expansion in mice.
Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Cost-Benefit Analysis , Heterografts , Humans , Mice , Mice, SCID , Neoplasm Recurrence, Local , Tumor Microenvironment , Xenograft Model Antitumor AssaysABSTRACT
Biological enantioenriched chirality is a phenomenon that in living organisms, amino acids and carbohydrates typically have the same absolute configuration. Perhaps one of the earliest attempts to delineate the origins of this phenomenon was a theory known as asymmetric autocatalysis, a reaction in which the structures of the chiral catalyst and the product are the same, and in which the chiral product acts as a chiral catalyst for its own production. In theory, this would mean that small asymmetries in the product will propagate rapidly. However, autocatalysis also relies on the cross-inhibition of chiral states, something that would not likely be possible on primordial Earth. But recently, theories on asymmetric autocatalysis have begun to resurface as more recent findings indicate that other mechanisms exist to stabilize the homochiral states. In this study, I propose an autocatalytic cycle, and using density functional theory, prove that (1) it is plausible on primordial Earth, and (2) it propagates arbitrary asymmetries in proline. Thus, facilitating asymmetry in proline and allowing access to a wide variety of asymmetric proline-catalyzed reactions, including those involved in the synthesis of amino acids and carbohydrates from achiral precursors.
Subject(s)
Glutamic Acid/chemistry , Proline/chemistry , Catalysis , Earth, Planet , Evolution, Chemical , StereoisomerismABSTRACT
Studies assessing the efficacy of intralesional verapamil injection in the treatment of Peyronie's disease have yielded mixed results. The purpose of this meta-analysis is to systematise the existing literature on the efficacy of intralesional verapamil injection when used in the treatment of Peyronie's disease. The treatment outcomes of seven different study groups identified by computerised literature search were compared with natural history outcomes and data from control groups of three studies involving placebo saline injection. An exploratory meta-analysis was performed on the data due to differing patient populations, treatment protocols, and inconsistent selection and reporting of outcomes. Intralesional verapamil injection significantly improved sexual function (p < .0005) and penile curvature (p < .005) in individuals with Peyronie's disease. Decreases in pain may be significant after therapy but are questionable. The effect of verapamil on plaque size remains less impressive (p > .05). Intralesional verapamil injection has promise to positively impact a number of clinical outcomes of Peyronie's disease; however, a large, multicentre, randomised, controlled study with reliable protocols is needed to confirm the efficacy of treatment.
Subject(s)
Calcium Channel Blockers/administration & dosage , Penile Induration/drug therapy , Penis/drug effects , Sexual Behavior/drug effects , Verapamil/administration & dosage , Humans , Injections, Intralesional , Male , Penile Induration/physiopathology , Penis/physiopathology , Sexual Behavior/physiology , Treatment OutcomeABSTRACT
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3- translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To generalize to other rare cancers in which experimental models may not be readily available, we employed machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets.
ABSTRACT
Translocation renal cell carcinoma (tRCC) is an aggressive subtype of kidney cancer driven by TFE3 gene fusions, which act via poorly characterized downstream mechanisms. Here we report that TFE3 fusions transcriptionally rewire tRCCs toward oxidative phosphorylation (OXPHOS), contrasting with the highly glycolytic metabolism of most other renal cancers. This TFE3 fusion-driven OXPHOS program, together with heightened glutathione levels found in renal cancers, renders tRCCs sensitive to reductive stress - a metabolic stress state induced by an imbalance of reducing equivalents. Genome-scale CRISPR screening identifies tRCC-selective vulnerabilities linked to this metabolic state, including EGLN1, which hydroxylates HIF-1α and targets it for proteolysis. Inhibition of EGLN1 compromises tRCC cell growth by stabilizing HIF-1a and promoting metabolic reprogramming away from OXPHOS, thus representing a vulnerability to OXPHOS-dependent tRCC cells. Our study defines a distinctive tRCC-essential metabolic program driven by TFE3 fusions and nominates EGLN1 inhibition as a therapeutic strategy to counteract fusion-induced metabolic rewiring.
ABSTRACT
Human leukocyte antigen (HLA) class I defects are associated with cancer progression. However, their prognostic significance is controversial and may be modulated by immune checkpoints. Here, we investigated whether the checkpoint B7-H3 modulates the relationship between HLA class I and pancreatic ductal adenocarcinoma (PDAC) prognosis. PDAC tumors were analyzed for the expression of B7-H3, HLA class I, HLA class II molecules, and for the presence of tumor-infiltrating immune cells. We observed defective HLA class I and HLA class II expressions in 75% and 59% of PDAC samples, respectively. HLA class I and B7-H3 expression were positively related at mRNA and protein level, potentially because of shared regulation by RELA, a sub-unit of NF-kB. High B7-H3 expression and low CD8+ T cell density were indicators of poor survival, while HLA class I was not. Defective HLA class I expression was associated with unfavorable survival only in patients with low B7-H3 expression. Favorable survival was observed only when HLA class I expression was high and B7-H3 expression low. Our results provide the rationale for targeting B7-H3 in patients with PDAC tumors displaying high HLA class I levels.
Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , B7 Antigens/genetics , B7 Antigens/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Pancreatic Ductal/pathology , Disease Progression , Histocompatibility Antigens Class I , Lymphocytes, Tumor-Infiltrating , Pancreatic Neoplasms/metabolism , PrognosisABSTRACT
Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.
Subject(s)
Proteins , Thalidomide/analogs & derivatives , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Thalidomide/pharmacologyABSTRACT
The aberrant localization of proteins in cells is a key factor in the development of various diseases, including cancer and neurodegenerative disease. To better understand and potentially manipulate protein localization for therapeutic purposes, we engineered bifunctional compounds that bind to proteins in separate cellular compartments. We show these compounds induce nuclear import of cytosolic cargoes, using nuclear-localized BRD4 as a "carrier" for co-import and nuclear trapping of cytosolic proteins. We use this system to calculate kinetic constants for passive diffusion across the nuclear pore and demonstrate single-cell heterogeneity in response to these bifunctional molecules, with cells requiring high carrier to cargo expression for complete import. We also observe incorporation of cargoes into BRD4-containing condensates. Proteins shown to be substrates for nuclear transport include oncogenic mutant nucleophosmin (NPM1c) and mutant PI3K catalytic subunit alpha (PIK3CAE545K), suggesting potential applications to cancer treatment. In addition, we demonstrate that chemical-induced localization of BRD4 to cytosolic-localized DNA-binding proteins, namely, IRF1 with a nuclear export signal, induces target gene expression. These results suggest that induced localization of proteins with bifunctional molecules enables the rewiring of cell circuitry with significant implications for disease therapy.
ABSTRACT
Xp11 translocation renal cell carcinoma (tRCC) is a female-predominant kidney cancer driven by translocations between the TFE3 gene on chromosome Xp11.2 and partner genes located on either chrX or on autosomes. The rearrangement processes that underlie TFE3 fusions, and whether they are linked to the female sex bias of this cancer, are largely unexplored. Moreover, whether oncogenic TFE3 fusions arise from both the active and inactive X chromosomes in females remains unknown. Here we address these questions by haplotype-specific analyses of whole-genome sequences of 29 tRCC samples from 15 patients and by re-analysis of 145 published tRCC whole-exome sequences. We show that TFE3 fusions universally arise as reciprocal translocations with minimal DNA loss or insertion at paired break ends. Strikingly, we observe a near exact 2:1 female:male ratio in TFE3 fusions arising via X:autosomal translocation (but not via X inversion), which accounts for the female predominance of tRCC. This 2:1 ratio is at least partially attributable to oncogenic fusions involving the inactive X chromosome and is accompanied by partial re-activation of silenced chrX genes on the rearranged chromosome. Our results highlight how somatic alterations involving the X chromosome place unique constraints on tumor initiation and exemplify how genetic rearrangements of the sex chromosomes can underlie cancer sex differences.
ABSTRACT
IMPORTANCE: Although typically impressive, objective responses to immune checkpoint inhibitors (ICIs) occur in only 12.5% of patients with advanced cancer. The majority of patients do not respond due to cell-intrinsic resistance mechanisms, including human leukocyte antigen (HLA) class I antigen-processing machinery (APM) defects. The APM defects, which have a negative effect on neoantigen presentation to cytotoxic T lymphocytes (CTLs), are present in the majority of malignant tumors. These defects are caused by gene variations in less than 25% of cases and by dysregulated signaling and/or epigenetic changes in most of the remaining cases, making them frequently correctable. This narrative review summarizes the growing clinical evidence that chemotherapy, targeted therapies, and, to a lesser extent, radiotherapy can correct HLA class I APM defects in cancer cells and improve responses to ICIs. OBSERVATIONS: Most chemotherapeutics enhance HLA class I APM component expression and function in cancer cells, tumor CTL infiltration, and responses to ICIs in preclinical and clinical models. Despite preclinical evidence, radiotherapy does not appear to upregulate HLA class I expression in patients and does not enhance the efficacy of ICIs in clinical settings. The latter findings underscore the need to optimize the dose and schedule of radiation and timing of ICI administration to maximize their immunogenic synergy. By increasing DNA and chromatin accessibility, epigenetic agents (histone deacetylase inhibitors, DNA methyltransferase inhibitors, and EZH2 inhibitors) enhance HLA class I APM component expression and function in many cancer types, a crucial contributor to their synergy with ICIs in patients. Furthermore, epidermal growth factor receptor (EGFR) inhibitors and BRAF/mitogen-activated protein kinase kinase inhibitors are effective at upregulating HLA class I expression in EGFR- and BRAF-variant tumors, respectively; these changes may contribute to the clinical responses induced by these inhibitors in combination with ICIs. CONCLUSIONS AND RELEVANCE: This narrative review summarizes evidence indicating that chemotherapy and targeted therapies are effective at enhancing HLA class I APM component expression and function in cancer cells. The resulting increased immunogenicity and recognition and elimination of cancer cells by cognate CTLs contributes to the antitumor activity of these therapies as well as to their synergy with ICIs.
Subject(s)
Histocompatibility Antigens Class I , Immune Checkpoint Inhibitors , Neoplasms , HLA Antigens , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , T-Lymphocytes, Cytotoxic , Up-RegulationABSTRACT
Expression of the non-coding RNA XIST is essential for initiating X chromosome inactivation (XCI) during early development in female mammals. As the main function of XCI is to enable dosage compensation of chromosome X genes between the sexes, XCI and XIST expression are generally absent in male normal tissues, except in germ cells and in individuals with supernumerary X chromosomes. Via a systematic analysis of public sequencing data of both cancerous and normal tissues, we report that XIST is somatically activated in a subset of male human cancers across diverse lineages. Some of these cancers display hallmarks of XCI, including silencing of gene expression, reduced chromatin accessibility, and increased DNA methylation across chromosome X, suggesting that the developmentally restricted, female-specific program of XCI can be somatically accessed in male cancers.
Subject(s)
Neoplasms , RNA, Long Noncoding , Animals , Humans , Male , Female , X Chromosome Inactivation/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/metabolism , Dosage Compensation, Genetic , Mammals/genetics , Neoplasms/geneticsABSTRACT
PURPOSE: The association of human leucocyte antigen (HLA) class I expression levels with the clinical course of many malignancies reflects their crucial role in the recognition and elimination of malignant cells by cognate T cells and NK cells. In colorectal cancer, results regarding this association are conflicting. The potential pathogenetic and therapeutic implications of this association prompted us to perform a large patient-level pooled analysis assessing the role of the expression level of HLA class I loci gene products in colon and rectal cancer. EXPERIMENTAL DESIGN: Included studies provided patient-level data on HLA class I expression levels determined by immunohistochemistry on surgical specimens. Expression levels of the HLA class I loci gene products (HLA-A, HLA-B/C) were correlated with common genetic events and survival. RESULTS: Data from 5 studies including 2863 patients were used. In the 1620 colon cancer patients, lower HLA-A, HLA-B/C and total HLA class I expression levels were associated with microsatellite instability (p=0.044, p=0.008 and p=0.022, respectively), higher frequency of BRAF mutations (p<0.001, p=0.021 and p<0.001, respectively) and lower frequency of KRAS mutations (p=0.001, ns and p=0.002, respectively). In the 1243 rectal cancer patients, HLA-A expression was higher in tumors treated with neoadjuvant radiation (p=0.024). High HLA-B/C, but not HLA-A, expression level was an independent predictor of favorable overall survival in colon (p=0.006) and rectal (p<0.001) cancer. CONCLUSIONS: T-cells and HLA-B/C antigens, rather than NK cells and HLA-A antigens, likely play an important role in controlling colon/rectal cancer growth. Colon/rectal cancer patients may benefit from strategies that upregulate HLA-B/C and trigger or enhance T cell immunity.
Subject(s)
Colonic Neoplasms , HLA-A Antigens , Rectal Neoplasms , Colonic Neoplasms/genetics , HLA-B Antigens , HLA-C Antigens , Histocompatibility Antigens Class I , Humans , Prognosis , Rectal Neoplasms/geneticsABSTRACT
Mitochondrial dynamics can regulate Major Histocompatibility Complex (MHC)-I antigen expression by cancer cells and their immunogenicity in mice and in patients with malignancies. A crucial role in the mitochondrial fragmentation connection with immunogenicity is played by the IRE1α-XBP-1s axis. XBP-1s is a transcription factor for aminopeptidase TPP2, which inhibits MHC-I complex cell surface expression likely by degrading tumor antigen peptides. Mitochondrial fission inhibition with Mdivi-1 upregulates MHC-I expression on cancer cells and enhances the efficacy of adoptive T cell therapy in patient-derived tumor models. Therefore mitochondrial fission inhibition might provide an approach to enhance the efficacy of T cell-based immunotherapy.
Subject(s)
Mitochondrial Dynamics , Neoplasms , Animals , Endoribonucleases , Major Histocompatibility Complex , Mice , Mitochondrial Dynamics/physiology , Neoplasms/therapy , Protein Serine-Threonine KinasesABSTRACT
PURPOSE: Interpretation of genomic variants in tumor samples still presents a challenge in research and the clinical setting. A major issue is that information for variant interpretation is fragmented across disparate databases, and aggregation of information from these requires building extensive infrastructure. To this end, we have developed Genome Nexus, a one-stop shop for variant annotation with a user-friendly interface for cancer researchers and clinicians. METHODS: Genome Nexus (1) aggregates variant information from sources that are relevant to cancer research and clinical applications, (2) allows high-performance programmatic access to the aggregated data via a unified application programming interface, (3) provides a reference page for individual cancer variants, (4) provides user-friendly tools for annotating variants in patients, and (5) is freely available under an open source license and can be installed in a private cloud or local environment and integrated with local institutional resources. RESULTS: Genome Nexus is available at https://www.genomenexus.org. It displays annotations from more than a dozen resources including those that provide variant effect information (variant effect predictor), protein sequence annotation (Uniprot, Pfam, and dbPTM), functional consequence prediction (Polyphen-2, Mutation Assessor, and SIFT), population prevalences (gnomAD, dbSNP, and ExAC), cancer population prevalences (Cancer hotspots and SignalDB), and clinical actionability (OncoKB, CIViC, and ClinVar). We describe several use cases that demonstrate the utility of Genome Nexus to clinicians, researchers, and bioinformaticians. We cover single-variant annotation, cohort analysis, and programmatic use of the application programming interface. Genome Nexus is unique in providing a user-friendly interface specific to cancer that allows high-performance annotation of any variant including unknown ones. CONCLUSION: Interpretation of cancer genomic variants is improved tremendously by having an integrated resource for annotations. Genome Nexus is freely available under an open source license.
Subject(s)
Neoplasms , Software , Genomics , Humans , Molecular Sequence Annotation , Mutation , Neoplasms/geneticsABSTRACT
Translocation renal cell carcinoma (tRCC) is a poorly characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKIs) are worse than those treated with immune checkpoint inhibitors (ICI). Using multiparametric immunofluorescence, we find that the tumors are infiltrated with CD8+ T cells, though the T cells harbor an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.
Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Microphthalmia-Associated Transcription Factor/genetics , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Gene Expression Regulation, Neoplastic , Gene Fusion/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Oncogene Proteins, Fusion/metabolism , Protein Kinase Inhibitors/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitorsABSTRACT
Human leukocyte antigen (HLA) class I antigen-processing machinery (APM) plays a crucial role in the synthesis and expression of HLA class I tumor antigen-derived peptide complexes; the latter mediate the recognition and elimination of malignant cells by cognate T cells. Defects in HLA class I APM component expression and/or function are frequently found in cancer cells, providing them with an immune escape mechanism that has relevance in the clinical course of the disease and in the response to T-cell-based immunotherapy. The majority of HLA class I APM defects (>75%) are caused by epigenetic mechanisms or dysregulated signaling and therefore can be corrected by strategies that counteract the underlying mechanisms. Their application in oncology is likely to improve responses to T-cell-based immunotherapies, including checkpoint inhibition.
Subject(s)
Antigen Presentation , Immunotherapy , HLA Antigens , Histocompatibility Antigens Class I , Humans , T-LymphocytesABSTRACT
The recent impressive clinical responses to antibody-based immunotherapy have prompted the identification of clinically relevant tumor antigens that can serve as targets in solid tumors. Among them, B7-H3, a member of the B7 ligand family, represents an attractive target for antibody-based immunotherapy, it is overexpressed on differentiated malignant cells and cancer-initiating cells, with limited heterogeneity, and high frequency (60% of 25,000 tumor samples) in many different cancer types, but has a limited expression at low level in normal tissues. In nonmalignant tissues, B7-H3 has a predominantly inhibitory role in adaptive immunity, suppressing T-cell activation and proliferation. In malignant tissues, B7-H3 inhibits tumor antigen-specific immune responses, leading to a protumorigenic effect. B7-H3 also has nonimmunologic protumorigenic functions, such as promoting migration and invasion, angiogenesis, chemoresistance, and endothelial-to-mesenchymal transition, as well as affecting tumor cell metabolism. As a result, B7-H3 expression in tumors is associated with poor prognosis. Although experimental B7-H3 silencing reduces cancer cell malignant potential, there has been limited emphasis on the development of B7-H3-blocking antibodies, most likely because the B7-H3 receptor remains unknown. Instead, many antibody-based strategies utilizing distinct effector mechanisms to target B7-H3-expressing cancer cells have been developed. These strategies have demonstrated potent antitumor activity and acceptable safety profiles in preclinical models. Ongoing clinical trials are assessing their safety and efficacy in patients. Identification of the B7-H3 receptor will improve our understanding of its role in tumor immunity, and will suggest rational strategies to develop blocking antibodies, which may enhance the therapeutic efficacy of tumor immunity.
Subject(s)
Antibodies, Monoclonal/therapeutic use , B7 Antigens/antagonists & inhibitors , Immunotherapy/methods , Neoplasms/drug therapy , Humans , Molecular Targeted Therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathologyABSTRACT
Radiotherapy (RT) is a key treatment for prostate cancer. However, RT resistance can contribute to treatment failure. Prostate cancer stem cells (PCSCs) are radioresistant. We recently found that fractionated irradiation (FIR) upregulates expression of the immune checkpoint B7-H3 (CD276) on PCSCs and bulk cells in each prostate cancer cell line tested. These findings prompted us to investigate whether B7-H3 targeting chimeric antigen receptor (CAR) T cells, which may abrogate function of an immune checkpoint and mediate lysis of targeted cells, can target RT-resistant PCSCs in vitro and in vivo. B7-H3 expression is naturally higher on PCSCs than bulk prostate cancer cells and cytotoxicity of B7-H3 CAR T cells to PCSCs is more potent than to bulk prostate cancer cells. Furthermore, FIR significantly upregulates B7-H3 expression on PCSCs and bulk prostate cancer cells. The duration of FIR or single-dose irradiation-induced further upregulation of B7-H3 on bulk prostate cancer cells and PCSCs lasts for up to 3 days. B7-H3 CAR T-cell cytotoxicity against FIR-resistant PCSCs at a low effector to target ratio of 1:1 was assessed by flow cytometry and sphere formation assays. Further upregulation of B7-H3 expression by FIR made PCSCs even more sensitive to B7-H3 CAR T-cell-mediated killing. Consequently, the FIR and B7-H3 CAR T-cell therapy combination is much more effective than FIR or CAR T cells alone in growth inhibition of hormone-insensitive prostate cancer xenografts in immunodeficient mice. Our work provides a sound basis for further development of this unique combinatorial model of RT and B7-H3 CAR T-cell therapy for prostate cancer. SIGNIFICANCE: We demonstrate that FIR significantly upregulates B7-H3 expression by RT-resistant PCSCs and bulk cells; cytotoxicity of B7-H3 CAR T cells to FIR-treated PCSCs is potent and results in significantly improved antitumor efficacy in mice.