Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Emerg Infect Dis ; 30(5): 984-990, 2024 May.
Article in English | MEDLINE | ID: mdl-38666621

ABSTRACT

We conducted a cross-sectional study in wild boar and extensively managed Iberian pig populations in a hotspot area of Crimean-Congo hemorrhagic fever virus (CCHFV) in Spain. We tested for antibodies against CCHFV by using 2 ELISAs in parallel. We assessed the presence of CCHFV RNA by means of reverse transcription quantitative PCR protocol, which detects all genotypes. A total of 113 (21.8%) of 518 suids sampled showed antibodies against CCHFV by ELISA. By species, 106 (39.7%) of 267 wild boars and 7 (2.8%) of 251 Iberian pigs analyzed were seropositive. Of the 231 Iberian pigs and 231 wild boars analyzed, none tested positive for CCHFV RNA. These findings indicate high CCHFV exposure in wild boar populations in endemic areas and confirm the susceptibility of extensively reared pigs to CCHFV, even though they may only play a limited role in the enzootic cycle.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Swine Diseases , Animals , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Spain/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/virology , Swine , Cross-Sectional Studies , Swine Diseases/virology , Swine Diseases/epidemiology , Antibodies, Viral/blood , Seroepidemiologic Studies , Sus scrofa/virology , RNA, Viral
2.
BMC Biotechnol ; 21(1): 22, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33711981

ABSTRACT

BACKGROUND: The coronavirus disease-19 (COVID-19) emerged in Wuhan, China and rapidly spread worldwide. Researchers are trying to find a way to treat this disease as soon as possible. The present study aimed to identify the genes involved in COVID-19 and find a new drug target therapy. Currently, there are no effective drugs targeting SARS-CoV-2, and meanwhile, drug discovery approaches are time-consuming and costly. To address this challenge, this study utilized a network-based drug repurposing strategy to rapidly identify potential drugs targeting SARS-CoV-2. To this end, seven potential drugs were proposed for COVID-19 treatment using protein-protein interaction (PPI) network analysis. First, 524 proteins in humans that have interaction with the SARS-CoV-2 virus were collected, and then the PPI network was reconstructed for these collected proteins. Next, the target miRNAs of the mentioned module genes were separately obtained from the miRWalk 2.0 database because of the important role of miRNAs in biological processes and were reported as an important clue for future analysis. Finally, the list of the drugs targeting module genes was obtained from the DGIDb database, and the drug-gene network was separately reconstructed for the obtained protein modules. RESULTS: Based on the network analysis of the PPI network, seven clusters of proteins were specified as the complexes of proteins which are more associated with the SARS-CoV-2 virus. Moreover, seven therapeutic candidate drugs were identified to control gene regulation in COVID-19. PACLITAXEL, as the most potent therapeutic candidate drug and previously mentioned as a therapy for COVID-19, had four gene targets in two different modules. The other six candidate drugs, namely, BORTEZOMIB, CARBOPLATIN, CRIZOTINIB, CYTARABINE, DAUNORUBICIN, and VORINOSTAT, some of which were previously discovered to be efficient against COVID-19, had three gene targets in different modules. Eventually, CARBOPLATIN, CRIZOTINIB, and CYTARABINE drugs were found as novel potential drugs to be investigated as a therapy for COVID-19. CONCLUSIONS: Our computational strategy for predicting repurposable candidate drugs against COVID-19 provides efficacious and rapid results for therapeutic purposes. However, further experimental analysis and testing such as clinical applicability, toxicity, and experimental validations are required to reach a more accurate and improved treatment. Our proposed complexes of proteins and associated miRNAs, along with discovered candidate drugs might be a starting point for further analysis by other researchers in this urgency of the COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , Drug Repositioning , Protein Interaction Maps , SARS-CoV-2/drug effects , Computational Biology , Drug Discovery , Humans , MicroRNAs , COVID-19 Drug Treatment
3.
Genomics ; 112(1): 135-143, 2020 01.
Article in English | MEDLINE | ID: mdl-30735795

ABSTRACT

New diagnostic miRNA biomarkers for different types of cancer have been studied extensively, particularly for breast cancer (BC), which is a leading cause of death among women and has many different subtypes. In the present study, a systems biology approach was used to find remarkable and novel miRNA biomarkers for five molecular subtypes of BC: luminal A, luminal B, ERBB2, basal-like and normal-like. The mRNA expression data from the five BC subtypes was used to reconstruct co-expression networks. The important mRNA-miRNA interactions were considered when reconstructing the bipartite networks from which the five bipartite sub-networks were reconstructed for further analysis. The novel biomarkers detected for each subtype are as follows: miRNAs 26b-5p and 124-3p for basal-like, 26b-5p, 124-3p and 5011-5p for ERBB2, 26b-5p and 5011-5p for LumA, 124-3p, 26b-5p and 7-5p for LumB and 26b-5p, 124-3p and 193b-3p for normal-like. The roles of the identified miRNAs in the occurrence or development of each subtype of BC remain unclear and should be investigated in future studies. In addition, the target genes of these miRNAs may be critical to the mechanisms underlying each subtype and should be analyzed as therapeutic targets in future studies.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/classification , Breast Neoplasms/metabolism , Female , Gene Regulatory Networks , Humans , Prognosis , RNA, Messenger/metabolism
4.
Genomics ; 111(1): 76-89, 2019 01.
Article in English | MEDLINE | ID: mdl-29317304

ABSTRACT

Many experimental and computational studies have identified key protein coding genes in initiation and progression of esophageal squamous cell carcinoma (ESCC). However, the number of researches that tried to reveal the role of long non-coding RNAs (lncRNAs) in ESCC has been limited. LncRNAs are one of the important regulators of cancers which are transcribed dominantly in the genome and in various conditions. The main goal of this study was to use a systems biology approach to predict novel lncRNAs as well as protein coding genes associated with ESCC and assess their prognostic values. By using microarray expression data for mRNAs and lncRNAs from a large number of ESCC patients, we utilized "Weighted Gene Co-expression Network Analysis" (WGCNA) method to make a big coding-non-coding gene co-expression network, and discovered important functional modules. Gene set enrichment and pathway analysis revealed major biological processes and pathways involved in these modules. After selecting some protein coding genes involved in biological processes and pathways related to cancer, we used "LncTar", a computational tool to predict potential interactions between these genes and lncRNAs. By combining interaction results with Pearson correlations, we introduced some novel lncRNAs with putative key regulatory roles in the network. Survival analysis with Kaplan-Meier estimator and Log-rank test statistic confirmed that most of the introduced genes are associated with poor prognosis in ESCC. Overall, our study reveals novel protein coding genes and lncRNAs associated with ESCC, along with their predicted interactions. Based on the promising results of survival analysis, these genes can be used as good estimators of patients' survival, or even can be analyzed further as new potential signatures or targets for the therapy of ESCC disease.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Regulatory Networks , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/mortality , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Squamous Cell Carcinoma/mortality , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Open Reading Frames/genetics , Prognosis , Survival Analysis
5.
Microb Pathog ; 137: 103801, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31618669

ABSTRACT

Mastitis is one of the costliest diseases in dairy farms caused by infection of different microorganisms such as Escherichia coli, Streptococcus uberis and Staphylococcus aureus. Promoters are significantly involved in regulating gene expression and shedding light on the mechanisms of transcriptional regulation in physiological and immunological processes of the infections. Exploiting regulatory elements such as transcription factor binding sites (TFBSs modules) on the promoter region could reveal co-regulated genes, which allow screating regulatory models and executing a cross-sectional analysis on several databases. In this study, the promoter regions of 11 genes associated with contagious mastitis including CCL4, CXCL8, STAT3, IKBKB, MAPK14, NFKBIA, NFKB1, TNF, IL18, IL6, and HCK were investigated to predict the activating regulatory modules on promoters and to discover the key related transcription factors. By exploring the promoter regions, 228 genes were discovered comprising the same transcription factors modules. Out of 228 genes, 36 were validated using five microarray datasets. The promoter research of these genes revealed that as many as 7 down-regulated and 12 up-regulated genes are predictable in the network. The genes whose functions were associated with the initial gene list (11 genes), were identified by DAVID queries with TFBSs models implying that the approach provides a clear image of the underlying regulatory mechanism of gene expression profile and offers a novel approach in designing gene networks in cattle.


Subject(s)
Gene Regulatory Networks , Mastitis, Bovine/genetics , Promoter Regions, Genetic , Animals , Cattle , Female , Gene Expression Regulation , Mastitis, Bovine/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
6.
Biochem Biophys Res Commun ; 505(3): 794-800, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30297110

ABSTRACT

The vasculo-toxic effect of meglumine antimoniate (MA) was confirmed in our previous investigation. The current study investigates the association of this effect with altered VEGF-A and VEGF-R2 expression. Additional mechanisms by which MA causes vascular toxicity are not clearly understood. We hypothesized that MA may alter normal expression of apoptotic genes and cause vascular toxicity. The current investigation was designed to address this issue using a chick embryo model. Fertile chicken eggs were treated with MA and the extra-embryonic membrane (EEM) vasculature was evaluated by morphometric, molecular and immunohistochemistry assays. The results showed that MA not only altered apoptotic gene expression, but that this alteration may disturb the normal development of the vascular network and cause embryo malformation. The relative expression level of the CASP3, CASP7, CASP9, APAF1, AIF1 and TP53 genes increased in drug-exposed EEMs. In addition, IHC assay confirmed the low expression BCL2 and increased expression of Bax, which are associated with a high rate of apoptosis. We suggest that induction of an apoptotic signaling pathway can lead to vascular defects during embryo development and the consecutive cascade of events can lead to the embryo malformation.


Subject(s)
Apoptosis/drug effects , Meglumine Antimoniate/pharmacology , Animals , Apoptosis/genetics , Chick Embryo , Embryo, Nonmammalian , Embryonic Development , Extraembryonic Membranes/blood supply , Extraembryonic Membranes/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism
7.
Virulence ; 15(1): 2329447, 2024 12.
Article in English | MEDLINE | ID: mdl-38548679

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional expression of target genes. Virus-encoded miRNAs play an important role in the replication of viruses, modulate gene expression in both the virus and host, and affect their persistence and immune evasion in hosts. This renders viral miRNAs as potential targets for therapeutic applications, especially against pathogenic viruses that infect humans and animals. Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic RNA virus that causes severe disease in both humans and livestock. High mortality among newborn lambs and abortion storms are key characteristics of an RVF outbreak. To date, limited information is available on RVFV-derived miRNAs. In this study, computational methods were used to analyse the RVFV genome for putative pre-miRNA genes, which were then analysed for the presence of mature miRNAs. We detected 19 RVFV-encoded miRNAs and identified their potential mRNAs targets in sheep (Ovis aries), the most susceptible host. The identification of significantly enriched O. aries genes in association with RVFV miRNAs will help elucidate the molecular mechanisms underlying RVFV pathogenesis and potentially uncover novel drug targets for RVFV.


Subject(s)
Culicidae , MicroRNAs , Rift Valley Fever , Rift Valley fever virus , Humans , Pregnancy , Female , Animals , Sheep/genetics , Rift Valley fever virus/genetics , Rift Valley Fever/genetics , Rift Valley Fever/epidemiology , Culicidae/genetics , Disease Outbreaks , MicroRNAs/genetics
8.
J Wildl Dis ; 60(1): 77-85, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37924237

ABSTRACT

The red fox (Vulpes vulpes) is one of the most common species of wild Canidae and is relatively abundant in Iran. Foxes (Vulpes spp.) transmit many zoonotic diseases, the most important of which are visceral leishmaniasis, rabies, hydatidosis, toxocariasis, and trichinellosis. In this study, visceral leishmaniasis, rabies, ectoparasites, canine gastrointestinal helminths, dermatophytosis, distemper, parvovirus infection, and heartworm infections were evaluated among live-trapped and rescued foxes injured by traffic road accidents referred to the teaching hospital of Kerman, Iran, veterinary faculty. Skin scraping and direct microscopic examination were used to detect ectoparasites and dermatophytosis. Immunochromatography rapid kits were used to detect dirofilariasis, parvovirus infection, and distemper. Necropsy was used to check for gastrointestinal parasites. Rabies and visceral leishmaniosis were screened for with direct fluorescent antibody test and ELISA methods, respectively. Gastrointestinal helminth infections, including Toxocara canis, Taenia taeniaeformis, Dipylidium caninum, Joyeuxiella echinorhyncoids, Toxascaris leonina, Taenia hydatigena, Echinococcus granulosus, Rictolaria spp., Oxynema spp., Macracanthorhynchus hirudinaceus, and Physaloptera spp., were detected. Skin scrapings showed dermatophytosis and various ectoparasites, including Rhipicephalus sanguineus, Ctenocephalides canis and Ctenocephalides felis, and Sarcoptes scabiei, in foxes with dermal lesions. Distemper and parvovirus infection (26.66%) were the common viral diseases, and rabies infection rate was quite high (16.66%). Dirofilariasis and leishmaniasis were detected in 10% of the population. This study showed that urban foxes which often cohabit with humans and domestic animals are carriers of many different pathogens. This interaction may facilitate indirect cross-species transmission of zoonotic disease. Periodic health monitoring and multidisciplinary cooperation for the diagnosis, control, and prevention of these zoonoses is highly recommended.


Subject(s)
Cestoda , Dirofilariasis , Distemper , Dog Diseases , Helminths , Leishmaniasis, Visceral , Parvoviridae Infections , Rabies , Tinea , Humans , Animals , Dogs , Foxes/parasitology , Iran/epidemiology , Leishmaniasis, Visceral/veterinary , Rabies/veterinary , Zoonoses , Parvoviridae Infections/veterinary , Tinea/veterinary , Prevalence , Dog Diseases/epidemiology
9.
J Virol Methods ; 326: 114915, 2024 May.
Article in English | MEDLINE | ID: mdl-38479590

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne zoonotic orthonairovirus of public health concern and widespread geographic distribution. Several animal species are known to seroconvert after infection with CCHFV without showing clinical symptoms. The commercial availability of a multi-species ELISA has led to an increase in recent serosurveillance studies as well as in the range of species reported to be exposed to CCHFV in the field, including wild boar (Sus scrofa). However, development and validation of confirmatory serological tests for swine based on different CCHFV antigens or test principles are hampered by the lack of defined control sera from infected and non-infected animals. For the detection of anti-CCHFV antibodies in swine, we established a swine-specific in-house ELISA using a panel of swine sera from CCHFV-free regions and regions with reported CCHFV circulation. We initially screened more than 700 serum samples from wild boar and domestic pigs and observed a correlation of ≃67% between the commercial and the in-house test. From these sera, we selected a panel of 60 samples that were further analyzed in a newly established indirect immunofluorescence assay (iIFA) and virus neutralization test. ELISA-non-reactive samples tested negative. Interestingly, only a subset of samples reactive in both ELISA and iIFA displayed CCHFV-neutralizing antibodies. The observed partial discrepancy between the tests may be explained by different test sensitivities, antibody cross-reactivities or suggests that the immune response to CCHFV in swine is not necessarily associated with eliciting neutralizing antibodies. Overall, this study highlights that meaningful CCHFV serology in swine, and possibly other species, should involve the performance of multiple tests and careful interpretation of the results.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Animals , Swine , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/veterinary , Antibodies, Neutralizing , Serologic Tests , Sus scrofa , Antibodies, Viral
10.
Pathogens ; 12(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37375443

ABSTRACT

Usutu virus (USUV) and West Nile virus (WNV) are known to cause diseases and mortalities in bird populations. Since 2010/2011, USUV has circulated in Germany and spread nationwide, while WNV was only introduced into East Germany in 2018. The zoological garden investigated is located in Northern Germany, where USUV infections in wild birds have been detected for several years. In this longitudinal study conducted over a four-year period, zoo birds were sampled biannually and screened for molecular and serological evidence of USUV and WNV. USUV genomes were detected in eight of the sampled birds and whole-genome sequences revealed the circulation of USUV lineages Europe 3 and Africa 3. Of the eight birds infected with USUV during the study period, four died after the infection, while four survived without displaying clinical signs. Furthermore, in a few of the birds, a USUV (re-)infection was confirmed on a serological level with three birds producing USUV-neutralizing antibodies (nAbs) over a period of four years. Nonetheless, in two birds sampled throughout this longitudinal study, neither a USUV nor a WNV infection was evident. In 2022, WNV nAbs were detected for the first time in a juvenile zoo bird, indicating the introduction of the virus into this region.

11.
Vaccines (Basel) ; 11(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36992236

ABSTRACT

West Nile virus (WNV) is known to cause disease and death in humans and various animals worldwide. WNV has circulated in Germany since 2018. In 2020, four birds tested positive for the WNV genome at Zoopark Erfurt (Thuringia). Moreover, virus neutralization assays detected neutralizing antibodies (nAb) against WNV in 28 birds. In addition, nAb against WNV and Usutu virus (USUV) were found in 14 birds. To protect valuable animals and to reduce the risk of viral transmission from birds to humans, we performed a field study on WNV vaccination at the zoo. To conduct the study, 61 birds from the zoo were categorized into three groups and subjected to a vaccination regimen, where each bird received either 1.0 mL, 0.5 mL, or 0.3 mL of a commercial inactivated WNV vaccine three times. The vaccinations were administered at three-week intervals, or as per modified vaccination schedules. Furthermore, 52 birds served as non-vaccinated controls. Adverse vaccination reactions were absent. The greatest increase in nAb titres was observed in birds that received 1.0 mL of vaccine. However, pre-existing antibodies to WNV and USUV appeared to have a major effect on antibody development in all groups and in all bird species, whereas sex and age had no effect. After vaccination, no death was detected in vaccinated birds for more than 1 year.

12.
PLoS Negl Trop Dis ; 17(10): e0011203, 2023 10.
Article in English | MEDLINE | ID: mdl-37782665

ABSTRACT

Usutu virus (USUV) is a mosquito-borne flavivirus that is widely distributed in southern and central Europe. The zoonotic virus circulates primarily between birds and mosquitoes, can, however, in rare cases infect other mammals including humans. In the past, USUV has been repeatedly associated with mass mortalities in birds, primarily blackbirds and owls. Birds commonly succumb either due to the peracute nature of the infection or due to severe encephalitis. In Germany, USUV has spread rapidly since its first detection in 2010 in mosquitoes under the presence of susceptible host and vector species. Nonetheless, there is to date limited access to whole genome sequences resulting in the absence of in-depth phylogenetic and phylodynamic analyses. In this study, 118 wild and captive birds were sequenced using a nanopore sequencing platform with prior target enrichment via amplicons. Due to the high abundancy of Europe 3 and Africa 3 in Germany an ample quantity of associated whole genome sequences was generated and the most recent common ancestor could be determined for each lineage. The corresponding clock phylogeny revealed an introduction of USUV Europe 3 and Africa 3 into Germany three years prior to their first isolation in the avifauna in 2011 and 2014, respectively. Based on the clustering and temporal history of the lineages, evidence exists for the genetic evolution of USUV within Germany as well as new introductions thereof into the country.


Subject(s)
Culicidae , Flavivirus Infections , Flavivirus , Animals , Humans , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Phylogeny , Mosquito Vectors , Germany , Birds , Evolution, Molecular , Mammals
13.
J Sci Food Agric ; 92(13): 2652-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22555872

ABSTRACT

BACKGROUND: The objective of this study was optimisation of multiplex polymerase chain reaction (PCR) by a new primer set for simultaneous detection of ropiness agents as the main bacterial spoilage of Iranian bread. After inoculation of bread dough with activated Bacillus licheniformis (ATCC 9789) and Bacillus subtilis (ATCC 6633), DNA was extracted from the dough and subjected to PCR. Then simplex and multiplex PCR tests were optimised. RESULTS: From the results obtained, the optimum PCR conditions for simultaneous detection of the target genes in Bacillus species were an annealing temperature of 59 °C and an MgCl(2) concentration of 2.5 mmol L(-1) . To design primers for these two bacteria, owing to close homology and the existence of similar conserved sequences in their 16S rRNA genes, lpaL and aprE genes (497 and 744 bp target sequences) respectively were chosen. Finally, by sequencing of PCR products, accurate and specific detection of the two desired Bacillus species was confirmed. The results were registered with GenBank under accession numbers HQ877873 and HQ871154. CONCLUSION: Compared with culture-dependent methods, this procedure offers significantly higher accuracy and speed, which are crucial criteria when it comes to food safety and high volumes of referred samples respectively.


Subject(s)
Bacillus/genetics , Bread/microbiology , DNA Primers , DNA, Bacterial/analysis , Genes, Bacterial , Multiplex Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Bacterial Proteins/genetics , Base Sequence , Iran , Magnesium Chloride , Membrane Transport Proteins/genetics , Sequence Analysis, DNA , Sequence Homology , Temperature
14.
Front Physiol ; 13: 910157, 2022.
Article in English | MEDLINE | ID: mdl-36105294

ABSTRACT

The discovery of bats as reservoir hosts for a number of highly pathogenic zoonotic agents has led to an increasing interest of infectious disease research in experimental studies with bats. Therefore, we established breeding colonies of Rousettus aegyptiacus and Eidolon helvum fruit bats, which both have been identified as reservoir hosts for relevant zoonotic disease agents, such as Marburg virus and Lagos bat virus. Since 2013, individuals of both species have been recruited to the Friedrich-Loeffler-Institut (FLI) from zoological gardens in Europe, to where these species had been introduced from the wild several decades ago. The aviaries have been designed according to national recommendations published by the Federal Ministry of Agriculture. Under these conditions, both species have been reproducing for years. To better understand the physiology of these animals, and to generate baseline knowledge for infection experiments, we monitored the body core temperatures of R. aegyptiacus bats in the aviaries, and found a circadian variation between 34°C and 41.5°C. We also determined the hematological parameters of both species, and detected specific differences between both bat species. For values of clinical chemistry, no correlation to age or sex was observed. However, species-specific differences were detected since ALT, BUN and CREA were found to be significantly higher in R. aegyptiacus and GLU and TP were significantly higher in E. helvum bats. A higher hematocrit, hemoglobin and red blood cell level was observed in subadult R. aegyptiacus, with hemoglobin and red blood cells also being significantly increased compared to E. helvum. Lymphocytes were found to be the dominant white blood cells in both species and are higher in female E. helvum. Neutrophil granulocytes were significantly higher in E. helvum bats. This underlines the necessity to define baseline profiles for each bat species prior to their use in experimental challenge.

15.
Front Microbiol ; 13: 1044316, 2022.
Article in English | MEDLINE | ID: mdl-36439823

ABSTRACT

Usutu virus (USUV) is a mosquito-borne zoonotic virus and one of the causes of flavivirus encephalitis in birds and occasionally in humans. USUV rapidly disperses in a susceptible host and vector environment, as is the case in South and Central Europe. However, compared to other flaviviruses, USUV has received less research attention and there is therefore limited access to whole-genome sequences and also to in-depth phylogenetic and phylodynamic analyses. To ease future molecular studies, this study compares first- (partial sequencing via Sanger), second- (Illumina), and third-generation (MinION Nanopore) sequencing platforms for USUV. With emphasis on MinION Nanopore sequencing, cDNA-direct and target-enrichment (amplicon-based) sequencing approaches were validated in parallel. The study was based on four samples from succumbed birds commonly collected throughout Germany. The samples were isolated from various sample matrices, organs as well as blood cruor, and included three different USUV lineages. We concluded that depending on the focus of a research project, amplicon-based MinION Nanopore sequencing can be an ideal cost- and time-effective alternative to Illumina in producing optimal genome coverage. It can be implemented for an array of lab- or field-based objectives, including among others: phylodynamic studies and the analysis of viral quasispecies.

16.
Pathogens ; 11(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36558837

ABSTRACT

On the African continent, a large number of arthropod-borne viruses (arboviruses) with zoonotic potential have been described, and yet little is known of most of these pathogens, including their actual distribution or genetic diversity. In this study, we evaluated as a proof-of-concept the effectiveness of the nonspecific sequencing technique sequence-independent single primer amplification (SISPA) on third-generation sequencing techniques (MinION sequencing, Oxford Nanopore Technologies, Oxford, UK) by comparing the sequencing results from six different samples of arboviruses known to be circulating in Africa (Crimean-Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), Dugbe virus (DUGV), Nairobi sheep disease virus (NSDV), Middleburg virus (MIDV) and Wesselsbron virus (WSLV)). All sequenced samples were derived either from previous field studies or animal infection trials. Using this approach, we were able to generate complete genomes for all six viruses without the need for virus-specific whole-genome PCRs. Higher Cq values in diagnostic RT-qPCRs and the origin of the samples (from cell culture or animal origin) along with their quality were found to be factors affecting the success of the sequencing run. The results of this study may stimulate the use of metagenomic sequencing approaches, contributing to a better understanding of the genetic diversity of neglected arboviruses.

17.
Microorganisms ; 10(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35744614

ABSTRACT

Since the identification of Hendra virus (HeV) infections in horses in Australia in 1994, more than 80 outbreaks in horses have been reported, and four out of seven spillover infections in humans had a fatal outcome. With the availability of a subunit vaccine based on the HeV-Glycoprotein (HeV-G), there is a need to serologically Differentiate the Infected from the Vaccinated Animals (DIVA). We developed an indirect ELISA using HeV-G expressed in Leishmania tarentolae and HeV-Nucleoprotein (HeV-N) expressed in recombinant baculovirus-infected insect cells as antigens. During evaluation, we tested panels of sera from naïve, vaccinated and infected horses that either originated from a Hendra-virus free region, or had been pre-tested in validated diagnostic tests. Our data confirm the reliability of this approach, as HeV-N-specific antibodies were only detected in sera from infected horses, while HeV-G-specific antibodies were detected in infected and vaccinated horses with a high level of specificity and sensitivity. Given the excellent correlation of data obtained for German and Australian HeV-negative horses, we assume that this test can be applied for the testing of horse serum samples from a variety of geographical regions.

18.
Sci Rep ; 12(1): 15069, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064749

ABSTRACT

Golden Syrian hamsters (Mesocricetus auratus) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1 * 105 to 1 * 10-4 tissue culture infectious dose 50 (TCID50). Body weight and virus shedding were monitored daily. 1 * 10-3 TCID50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 102.75 TCID50/ml, equaling the estimated MID for humans. Virological and histological data revealed 1 * 102 TCID50 as the optimal dose for experimental infections. This compelling high susceptibility leading to productive infections in Golden Syrian hamsters must be considered as a potential source of SARS-CoV-2 infection for humans that come into close contact with pet hamsters.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Lung/pathology , Mesocricetus , Pandemics , Zoonoses/pathology
19.
PLoS Negl Trop Dis ; 16(4): e0010203, 2022 04.
Article in English | MEDLINE | ID: mdl-35427361

ABSTRACT

In Mauritania, several mosquito-borne viruses have been reported that can cause devastating diseases in animals and humans. However, monitoring data on their occurrence and local distribution are limited. Rift Valley fever virus (RVFV) is an arthropod-borne virus that causes major outbreaks throughout the African continent and the Arabian Peninsula. The first Rift Valley fever (RVF) epidemic in Mauritania occurred in 1987 and since then the country has been affected by recurrent outbreaks of the disease. To gain information on the occurrence of RVFV as well as other mosquito-borne viruses and their vectors in Mauritania, we collected and examined 4,950 mosquitoes, belonging to four genera and 14 species. The mosquitoes were captured during 2018 in the capital Nouakchott and in southern parts of Mauritania. Evidence of RVFV was found in a mosquito pool of female Anopheles pharoensis mosquitoes collected in December on a farm near the Senegal River. At that time, 37.5% of 16 tested Montbéliarde cattle on the farm showed RVFV-specific IgM antibodies. Additionally, we detected IgM antibodies in 10.7% of 28 indigenous cattle that had been sampled on the same farm one month earlier. To obtain information on potential RVFV reservoir hosts, blood meals of captured engorged mosquitoes were analyzed. The mosquitoes mainly fed on humans (urban areas) and cattle (rural areas), but also on small ruminants, donkeys, cats, dogs and straw-colored fruit bats. Results of this study demonstrate the circulation of RVFV in Mauritania and thus the need for further research to investigate the distribution of the virus and its vectors. Furthermore, factors that may contribute to its maintenance should be analyzed more closely. In addition, two mosquito pools containing Aedes aegypti and Culex quinquefasciatus mosquitoes showed evidence of dengue virus (DENV) 2 circulation in the city of Rosso. Further studies are therefore needed to also examine DENV circulation in Mauritania.


Subject(s)
Aedes , Dengue Virus , Feeding Behavior , Flavivirus , Rift Valley fever virus , Animals , Cattle , Female , Flavivirus/isolation & purification , Immunoglobulin M , Mauritania/epidemiology , Mosquito Vectors , Rift Valley fever virus/isolation & purification
20.
Microorganisms ; 10(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35456857

ABSTRACT

West Nile virus (WNV) and Usutu virus (USUV) are important flaviviruses circulating in Germany. While USUV was first reported more than 10 years ago, WNV has only reached the country in 2018. Wild birds are important amplifying hosts for both viruses. Therefore, we have been monitoring the bird population in different regions of Germany by a previously established network for many years. This report summarizes the results of molecular and/or serological methods of 2345 blood samples from birds of 22 different orders and over 2900 bird carcasses from 2019 and 2020. USUV RNA circulation was found in different regions of Germany, with emphasis on USUV lineages Europe 3 and Africa 3. Increased evidence of USUV lineage Europe 2 was detected in eastern Germany. WNV RNA was found only in birds from the eastern part of the country. The seroprevalence for USUV was between 3.11% and 7.20% in all three regions investigated, whereas the WNV seroprevalence spanned from 14.77% to 16.15% in eastern Germany, with a noticeable tendency for a westward and southward expansion in both years. Thus, wild bird monitoring for WNV and USUV can serve as an early warning system for a human exposure risk.

SELECTION OF CITATIONS
SEARCH DETAIL