Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 270: 115841, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38113799

ABSTRACT

N-nitrosodiethylamine (ND) is an extremely toxic unavoidable environmental contaminant. CopperII-albumin (CuAB) complex, a newly developed Cu complex, showed antioxidant and anti-inflammatory potential. Hereby, we explored the plausible neuroprotective role of CuAB complex toward ND-evoked neurotoxicity in mice. Twenty-four male mice were sorted into 4 groups (6 mice each). Control group, mice were administered oral distilled water; and CuAB group, mice received CuAB complex at a dose of 817 µg/kg orally, three times weekly. In ND group, ND was given intraperitoneally (50 mg/kg body weight, once weekly for 6 w). CuAB+ND group, mice were administered a combination of CuAB and ND. The brain was quickly extracted upon completion of the experimental protocol for the evaluation of the oxidative/antioxidative markers, inflammatory cytokines, and histopathological examination. Oxidative stress was induced after ND exposure indicated by a reduction in GSH and SOD1 level, with increased MDA level. In addition, decreased expression of SOD1 proteins, Nrf2, and 5-HT mRNA expression levels were noticed. An apoptotic cascade has also been elicited, evidenced by overexpression of Cyt c, Cl. Casp 3. In addition, increased regulation of proinflammatory genes (TNF-α, IL-6, iNOS, Casp1, and NF-κB (p65/p50); besides, increment of protein expression of P-IKBα and reduced expression of IKBα. Pretreatment with CuAB complex significantly ameliorated ND neuronal damage. Our results recommend CuAB complex supplementation because it exerts neuroprotective effects against ND-induced toxicity.


Subject(s)
Copper , Neurotoxicity Syndromes , Mice , Male , Animals , Copper/toxicity , Diethylnitrosamine/pharmacology , Superoxide Dismutase-1/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Signal Transduction , Antioxidants/pharmacology , Antioxidants/metabolism , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control , NF-E2-Related Factor 2/metabolism
2.
Plants (Basel) ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915923

ABSTRACT

Pollen is a male flower gametophyte located in the anthers of stamens in angiosperms and a considerable source of compounds with health protective potential. In the present work, phytochemical screening was carried out as well as analysis of the antioxidant and antibacterial properties of pollen extracts from Micromeria fruticosa, Achillea fragrantissima, and Phoenix dactylifera growing wild in Palestine. Phytochemical screening examined the total flavonol, flavone and phenolic content. The DPPH (1,2-Diphenyl-1-Picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods were used to assess antioxidant propriety, and disc diffusion, minimum inhibitory and bactericidal concentration tests were used to test the pollen extract's antibacterial activity against multidrug-resistant (MDR) clinical isolates. The highest level of total phenolic was found in the extract of Micromeria fruticosa (56.78 ± 0.49 mg GAE (Gallic Acid Equivalent)/g). The flavone and flavonol content of samples ranged from 2.48 ± 0.05 to 8.03 ± 0.01 mg QE (Quercetin Equivalent)/g. Micromeria fruticosa pollen with IC50 values of 0.047 and 0.039 mg/mL in the DPPH and FRAP assays, respectively, showed the greatest radical scavenging action. In addition, this pollen showed a mild antibacterial action against the microorganisms studied, with MICs varying from 0.625 to 10 mg/mL and inhibition diameters ranging from 13.66 ± 1.5 to 16.33 ± 1.5 mm.

SELECTION OF CITATIONS
SEARCH DETAIL