Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 166(5): 1269-1281.e19, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27565349

ABSTRACT

The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.


Subject(s)
Genome, Human , Glucocorticoids/metabolism , Receptors, Glucocorticoid/metabolism , Transcription Factors/metabolism , Transcriptional Activation , A549 Cells , Binding Sites/drug effects , Chromatin Immunoprecipitation , Dexamethasone/metabolism , Dexamethasone/pharmacology , Genes, Reporter , Glucocorticoids/pharmacology , Humans , Protein Binding/drug effects , Response Elements
2.
Genome Res ; 32(6): 1183-1198, 2022 06.
Article in English | MEDLINE | ID: mdl-35609992

ABSTRACT

Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF occupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of exposure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the landscape of TF binding.


Subject(s)
Chromatin , Transcription Factors , Bayes Theorem , Binding Sites/genetics , Chromatin/genetics , Genome, Human , Humans , Protein Binding , Transcription Factors/metabolism
3.
Development ; 149(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35179181

ABSTRACT

The epicardium is a mesothelial tissue layer that envelops the heart. Cardiac injury activates dynamic gene expression programs in epicardial tissue, which in zebrafish enables subsequent regeneration through paracrine and vascularizing effects. To identify tissue regeneration enhancer elements (TREEs) that control injury-induced epicardial gene expression during heart regeneration, we profiled transcriptomes and chromatin accessibility in epicardial cells purified from regenerating zebrafish hearts. We identified hundreds of candidate TREEs, which are defined by increased chromatin accessibility of non-coding elements near genes with increased expression during regeneration. Several of these candidate TREEs were incorporated into stable transgenic lines, with five out of six elements directing injury-induced epicardial expression but not ontogenetic epicardial expression in larval hearts. Whereas two independent TREEs linked to the gene gnai3 showed similar functional features of gene regulation in transgenic lines, two independent ncam1a-linked TREEs directed distinct spatiotemporal domains of epicardial gene expression. Thus, multiple TREEs linked to a regeneration gene can possess either matching or complementary regulatory controls. Our study provides a new resource and principles for understanding the regulation of epicardial genetic programs during heart regeneration. This article has an associated 'The people behind the papers' interview.


Subject(s)
Enhancer Elements, Genetic/genetics , Heart/physiology , Pericardium/metabolism , Regeneration/physiology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Chromatin/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression Regulation , Larva/growth & development , Larva/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Pericardium/cytology , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
Am J Hum Genet ; 108(8): 1436-1449, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34216551

ABSTRACT

Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted. We performed targeted long-read sequencing (T-LRS) using adaptive sampling on the Oxford Nanopore platform on 40 individuals, 10 of whom lacked a complete molecular diagnosis. We computationally targeted up to 151 Mbp of sequence per individual and searched for pathogenic substitutions, structural variants, and methylation differences using a single data source. We detected all genomic aberrations-including single-nucleotide variants, copy number changes, repeat expansions, and methylation differences-identified by prior clinical testing. In 8/8 individuals with complex structural rearrangements, T-LRS enabled more precise resolution of the mutation, leading to changes in clinical management in one case. In ten individuals with suspected Mendelian conditions lacking a precise genetic diagnosis, T-LRS identified pathogenic or likely pathogenic variants in six and variants of uncertain significance in two others. T-LRS accurately identifies pathogenic structural variants, resolves complex rearrangements, and identifies Mendelian variants not detected by other technologies. T-LRS represents an efficient and cost-effective strategy to evaluate high-priority genes and regions or complex clinical testing results.


Subject(s)
Chromosome Aberrations , Cytogenetic Analysis/methods , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genome, Human , Mutation , DNA Copy Number Variations , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Karyotyping , Male , Sequence Analysis, DNA
5.
PLoS Genet ; 16(1): e1008537, 2020 01.
Article in English | MEDLINE | ID: mdl-31961859

ABSTRACT

Gene transcription profiles across tissues are largely defined by the activity of regulatory elements, most of which correspond to regions of accessible chromatin. Regulatory element activity is in turn modulated by genetic variation, resulting in variable transcription rates across individuals. The interplay of these factors, however, is poorly understood. Here we characterize expression and chromatin state dynamics across three tissues-liver, lung, and kidney-in 47 strains of the Collaborative Cross (CC) mouse population, examining the regulation of these dynamics by expression quantitative trait loci (eQTL) and chromatin QTL (cQTL). QTL whose allelic effects were consistent across tissues were detected for 1,101 genes and 133 chromatin regions. Also detected were eQTL and cQTL whose allelic effects differed across tissues, including local-eQTL for Pik3c2g detected in all three tissues but with distinct allelic effects. Leveraging overlapping measurements of gene expression and chromatin accessibility on the same mice from multiple tissues, we used mediation analysis to identify chromatin and gene expression intermediates of eQTL effects. Based on QTL and mediation analyses over multiple tissues, we propose a causal model for the distal genetic regulation of Akr1e1, a gene involved in glycogen metabolism, through the zinc finger transcription factor Zfp985 and chromatin intermediates. This analysis demonstrates the complexity of transcriptional and chromatin dynamics and their regulation over multiple tissues, as well as the value of the CC and related genetic resource populations for identifying specific regulatory mechanisms within cells and tissues.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/chemistry , Quantitative Trait Loci , Animals , Chromatin/genetics , Chromatin/metabolism , Kidney/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Liver/metabolism , Lung/metabolism , Male , Mice , Organ Specificity , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism
6.
Genome Res ; 28(10): 1577-1588, 2018 10.
Article in English | MEDLINE | ID: mdl-30139769

ABSTRACT

Cis-regulatory elements (CRE), short DNA sequences through which transcription factors (TFs) exert regulatory control on gene expression, are postulated to be the major sites of causal sequence variation underlying the genetics of complex traits and diseases. We present integrative analyses, combining high-throughput genomic and epigenomic data with sequence-based computations, to identify the causal transcriptional components in a given tissue. We use data on adult human hearts to demonstrate that (1) sequence-based predictions detect numerous, active, tissue-specific CREs missed by experimental observations, (2) learned sequence features identify the cognate TFs, (3) CRE variants are specifically associated with cardiac gene expression, and (4) a significant fraction of the heritability of exemplar cardiac traits (QT interval, blood pressure, pulse rate) is attributable to these variants. This general systems approach can thus identify candidate causal variants and the components of gene regulatory networks (GRN) to enable understanding of the mechanisms of complex disorders on a tissue- or cell-type basis.


Subject(s)
Myocardium/metabolism , Regulatory Elements, Transcriptional , Sequence Analysis, DNA/methods , Transcription Factors/genetics , Adult , Epigenomics , Gene Expression , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Organ Specificity
7.
Genome Res ; 28(9): 1272-1284, 2018 09.
Article in English | MEDLINE | ID: mdl-30097539

ABSTRACT

Glucocorticoids are potent steroid hormones that regulate immunity and metabolism by activating the transcription factor (TF) activity of glucocorticoid receptor (GR). Previous models have proposed that DNA binding motifs and sites of chromatin accessibility predetermine GR binding and activity. However, there are vast excesses of both features relative to the number of GR binding sites. Thus, these features alone are unlikely to account for the specificity of GR binding and activity. To identify genomic and epigenetic contributions to GR binding specificity and the downstream changes resultant from GR binding, we performed hundreds of genome-wide measurements of TF binding, epigenetic state, and gene expression across a 12-h time course of glucocorticoid exposure. We found that glucocorticoid treatment induces GR to bind to nearly all pre-established enhancers within minutes. However, GR binds to only a small fraction of the set of accessible sites that lack enhancer marks. Once GR is bound to enhancers, a combination of enhancer motif composition and interactions between enhancers then determines the strength and persistence of GR binding, which consequently correlates with dramatic shifts in enhancer activation. Over the course of several hours, highly coordinated changes in TF binding and histone modification occupancy occur specifically within enhancers, and these changes correlate with changes in the expression of nearby genes. Following GR binding, changes in the binding of other TFs precede changes in chromatin accessibility, suggesting that other TFs are also sensitive to genomic features beyond that of accessibility.


Subject(s)
Enhancer Elements, Genetic , Histone Code , Nucleotide Motifs , Receptors, Glucocorticoid/metabolism , Transcriptional Activation , Cell Line, Tumor , Epigenesis, Genetic , Humans , Protein Binding , Transcription Factors/metabolism
8.
Mol Cell ; 52(1): 25-36, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24076218

ABSTRACT

Most human transcription factors bind a small subset of potential genomic sites and often use different subsets in different cell types. To identify mechanisms that govern cell-type-specific transcription factor binding, we used an integrative approach to study estrogen receptor α (ER). We found that ER exhibits two distinct modes of binding. Shared sites, bound in multiple cell types, are characterized by high-affinity estrogen response elements (EREs), inaccessible chromatin, and a lack of DNA methylation, while cell-specific sites are characterized by a lack of EREs, co-occurrence with other transcription factors, and cell-type-specific chromatin accessibility and DNA methylation. These observations enabled accurate quantitative models of ER binding that suggest tethering of ER to one-third of cell-specific sites. The distinct properties of cell-specific binding were also observed with glucocorticoid receptor and for ER in primary mouse tissues, representing an elegant genomic encoding scheme for generating cell-type-specific gene regulation.


Subject(s)
Estrogen Receptor alpha/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Conserved Sequence , DNA Methylation , Estradiol/pharmacology , Estrogen Receptor alpha/drug effects , Estrogen Receptor alpha/genetics , Estrogens/pharmacology , Evolution, Molecular , Gene Expression Regulation , Humans , Mice , Models, Biological , Promoter Regions, Genetic/drug effects , RNA Interference , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Response Elements , Thermodynamics , Transcription Factors/genetics , Transfection
9.
Genome Res ; 25(8): 1158-69, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26025803

ABSTRACT

Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function.


Subject(s)
CRISPR-Cas Systems , Chromatin/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Transcription Factors/metabolism , Binding Sites , Chromatin Assembly and Disassembly , DNA/chemistry , DNA-Binding Proteins/chemistry , Gene Expression Regulation , Genetic Engineering/methods , Genome, Human , HEK293 Cells , Humans , Sequence Analysis, DNA , Sequence Analysis, RNA , Transcription Factors/chemistry
10.
Mamm Genome ; 29(1-2): 153-167, 2018 02.
Article in English | MEDLINE | ID: mdl-29429127

ABSTRACT

Epigenetic effects of environmental chemicals are under intense investigation to fill existing knowledge gaps between environmental/occupational exposures and adverse health outcomes. Chromatin accessibility is one prominent mechanism of epigenetic control of transcription, and understanding of the chemical effects on both could inform the causal role of epigenetic alterations in disease mechanisms. In this study, we hypothesized that baseline variability in chromatin organization and transcription profiles among various tissues and mouse strains influence the outcome of exposure to the DNA damaging chemical 1,3-butadiene. To test this hypothesis, we evaluated DNA damage along with comprehensive quantification of RNA transcripts (RNA-seq), identification of accessible chromatin (ATAC-seq), and characterization of regions with histone modifications associated with active transcription (ChIP-seq for acetylation at histone 3 lysine 27, H3K27ac). We collected these data in the lung, liver, and kidney of mice from two genetically divergent strains, C57BL/6J and CAST/EiJ, that were exposed to clean air or to 1,3-butadiene (~600 ppm) for 2 weeks. We found that tissue effects dominate differences in both gene expression and chromatin states, followed by strain effects. At baseline, xenobiotic metabolism was consistently more active in CAST/EiJ, while immune system pathways were more active in C57BL/6J across tissues. Surprisingly, even though all three tissues in both strains harbored butadiene-induced DNA damage, little transcriptional effect of butadiene was observed in liver and kidney. Toxicologically relevant effects of butadiene in the lung were on the pathways of xenobiotic metabolism and inflammation. We also found that variability in chromatin accessibility across individuals (i.e., strains) only partially explains the variability in transcription. This study showed that variation in the basal states of epigenome and transcriptome may be useful indicators for individuals or tissues susceptible to genotoxic environmental chemicals.


Subject(s)
DNA Damage/drug effects , Epigenesis, Genetic , Transcription, Genetic/genetics , Transcriptome/genetics , Animals , Butadienes/toxicity , Carcinogens/toxicity , Chromatin/drug effects , Histones/genetics , Liver/drug effects , Liver/pathology , Lung/drug effects , Lung/pathology , Mice , Mutagenicity Tests , Organ Specificity/drug effects , Transcription, Genetic/drug effects
11.
Nat Methods ; 12(12): 1143-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26501517

ABSTRACT

Epigenome editing with the CRISPR (clustered, regularly interspaced, short palindromic repeats)-Cas9 platform is a promising technology for modulating gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms of gene regulation. Fusions of nuclease-inactive dCas9 to the Krüppel-associated box (KRAB) repressor (dCas9-KRAB) can silence target gene expression, but the genome-wide specificity and the extent of heterochromatin formation catalyzed by dCas9-KRAB are not known. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that orchestrates the expression of multiple globin genes, and observed highly specific induction of H3K9 trimethylation (H3K9me3) at the enhancer and decreased chromatin accessibility of both the enhancer and its promoter targets. Targeted epigenetic modification of HS2 silenced the expression of multiple globin genes, with minimal off-target changes in global gene expression. These results demonstrate that repression mediated by dCas9-KRAB is sufficiently specific to disrupt the activity of individual enhancers via local modification of the epigenome.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Epigenesis, Genetic , Epigenomics/methods , Regulatory Elements, Transcriptional/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Viral , Globins/genetics , HEK293 Cells , Humans , K562 Cells , Lentivirus/genetics , RNA, Guide, Kinetoplastida/genetics , Repressor Proteins/genetics , Viral Proteins/genetics
12.
Nature ; 489(7414): 75-82, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22955617

ABSTRACT

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , DNA/genetics , Encyclopedias as Topic , Genome, Human/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , DNA Footprinting , DNA Methylation , DNA-Binding Proteins/metabolism , Deoxyribonuclease I/metabolism , Evolution, Molecular , Genomics , Humans , Mutation Rate , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Initiation Site , Transcription, Genetic
13.
Nucleic Acids Res ; 44(7): 3082-94, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26673704

ABSTRACT

Higher order chromatin structure establishes domains that organize the genome and coordinate gene expression. However, the molecular mechanisms controlling transcription of individual loci within a topological domain (TAD) are not fully understood. The cystic fibrosis transmembrane conductance regulator (CFTR) gene provides a paradigm for investigating these mechanisms.CFTR occupies a TAD bordered by CTCF/cohesin binding sites within which are cell-type-selective cis-regulatory elements for the locus. We showed previously that intronic and extragenic enhancers, when occupied by specific transcription factors, are recruited to the CFTR promoter by a looping mechanism to drive gene expression. Here we use a combination of CRISPR/Cas9 editing of cis-regulatory elements and siRNA-mediated depletion of architectural proteins to determine the relative contribution of structural elements and enhancers to the higher order structure and expression of the CFTR locus. We found the boundaries of the CFTRTAD are conserved among diverse cell types and are dependent on CTCF and cohesin complex. Removal of an upstream CTCF-binding insulator alters the interaction profile, but has little effect on CFTR expression. Within the TAD, intronic enhancers recruit cell-type selective transcription factors and deletion of a pivotal enhancer element dramatically decreases CFTR expression, but has minor effect on its 3D structure.


Subject(s)
Chromatin/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Insulator Elements , CCCTC-Binding Factor , Caco-2 Cells , Cell Cycle Proteins/metabolism , Cell Line , Cells, Cultured , Chromosomal Proteins, Non-Histone/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Genetic Loci , Humans , Repressor Proteins/metabolism , Cohesins
14.
PLoS Genet ; 11(1): e1004885, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569532

ABSTRACT

Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.


Subject(s)
Chromatin/genetics , Response Elements/genetics , Transcriptional Activation , Tumor Suppressor Protein p53/genetics , Animals , Binding Sites , Chromatin/drug effects , Chromosome Structures/drug effects , Chromosome Structures/genetics , DNA Transposable Elements , Doxorubicin/administration & dosage , Gene Expression Regulation/drug effects , Histone-Lysine N-Methyltransferase , Humans , Nucleosomes/genetics , Promoter Regions, Genetic , Protein Binding , Tumor Suppressor Protein p53/metabolism
15.
Hum Mol Genet ; 24(19): 5433-50, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26206884

ABSTRACT

SOX10 is required for melanocyte development and maintenance, and has been linked to melanoma initiation and progression. However, the molecular mechanisms by which SOX10 guides the appropriate gene expression programs necessary to promote the melanocyte lineage are not fully understood. Here we employ genetic and epigenomic analysis approaches to uncover novel genomic targets and previously unappreciated molecular roles of SOX10 in melanocytes. Through global analysis of SOX10-binding sites and epigenetic characteristics of chromatin states, we uncover an extensive catalog of SOX10 targets genome-wide. Our findings reveal that SOX10 predominantly engages 'open' chromatin regions and binds to distal regulatory elements, including novel and previously known melanocyte enhancers. Integrated chromatin occupancy and transcriptome analysis suggest a role for SOX10 in both transcriptional activation and repression to regulate functionally distinct classes of genes. We demonstrate that distinct epigenetic signatures and cis-regulatory sequence motifs predicted to bind putative co-regulatory transcription factors define SOX10-activated and SOX10-repressed target genes. Collectively, these findings uncover a central role of SOX10 as a global regulator of gene expression in the melanocyte lineage by targeting diverse regulatory pathways.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Melanocytes/metabolism , Oligonucleotide Array Sequence Analysis/methods , SOXE Transcription Factors/metabolism , Animals , Binding Sites , Cell Line , Chromatin/genetics , Chromatin/metabolism , Epigenomics/methods , Melanocytes/cytology , Mice , SOXE Transcription Factors/chemistry , SOXE Transcription Factors/genetics
16.
Hum Mol Genet ; 24(22): 6552-63, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26307087

ABSTRACT

Exfoliation syndrome (XFS) is a common, age-related, systemic fibrillinopathy. It greatly increases risk of exfoliation glaucoma (XFG), a major worldwide cause of irreversible blindness. Coding variants in the lysyl oxidase-like 1 (LOXL1) gene are strongly associated with XFS in all studied populations, but a functional role for these variants has not been established. To identify additional candidate functional variants, we sequenced the entire LOXL1 genomic locus (∼40 kb) in 50 indigenous, black South African XFS cases and 50 matched controls. The variants with the strongest evidence of association were located in a well-defined 7-kb region bounded by the 3'-end of exon 1 and the adjacent region of intron 1 of LOXL1. We replicated this finding in US Caucasian (91 cases/1031 controls), German (771 cases/1365 controls) and Japanese (1484 cases/1188 controls) populations. The region of peak association lies upstream of LOXL1-AS1, a long non-coding RNA (lncRNA) encoded on the opposite strand of LOXL1. We show that this region contains a promoter and, importantly, that the strongly associated XFS risk alleles in the South African population are functional variants that significantly modulate the activity of this promoter. LOXL1-AS1 expression is also significantly altered in response to oxidative stress in human lens epithelial cells and in response to cyclic mechanical stress in human Schlemm's canal endothelial cells. Taken together, these findings support a functional role for the LOXL1-AS1 lncRNA in cellular stress response and suggest that dysregulation of its expression by genetic risk variants plays a key role in XFS pathogenesis.


Subject(s)
Amino Acid Oxidoreductases/genetics , Exfoliation Syndrome/genetics , RNA, Long Noncoding/genetics , Aged , Alleles , Case-Control Studies , Exfoliation Syndrome/metabolism , Female , Gene Expression , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Oxidative Stress/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
17.
Genome Res ; 23(5): 777-88, 2013 May.
Article in English | MEDLINE | ID: mdl-23482648

ABSTRACT

Regulatory elements recruit transcription factors that modulate gene expression distinctly across cell types, but the relationships among these remains elusive. To address this, we analyzed matched DNase-seq and gene expression data for 112 human samples representing 72 cell types. We first defined more than 1800 clusters of DNase I hypersensitive sites (DHSs) with similar tissue specificity of DNase-seq signal patterns. We then used these to uncover distinct associations between DHSs and promoters, CpG islands, conserved elements, and transcription factor motif enrichment. Motif analysis within clusters identified known and novel motifs in cell-type-specific and ubiquitous regulatory elements and supports a role for AP-1 regulating open chromatin. We developed a classifier that accurately predicts cell-type lineage based on only 43 DHSs and evaluated the tissue of origin for cancer cell types. A similar classifier identified three sex-specific loci on the X chromosome, including the XIST lincRNA locus. By correlating DNase I signal and gene expression, we predicted regulated genes for more than 500K DHSs. Finally, we introduce a web resource to enable researchers to use these results to explore these regulatory patterns and better understand how expression is modulated within and across human cell types.


Subject(s)
Cells/metabolism , DNA-Binding Proteins/genetics , Deoxyribonuclease I/genetics , Regulatory Elements, Transcriptional/genetics , Regulatory Sequences, Nucleic Acid/genetics , Binding Sites/genetics , Cells/classification , Cells/cytology , Chromatin/genetics , Chromosome Mapping , Gene Expression Regulation , Genome, Human , Humans , Hypersensitivity , Organ Specificity , Protein Binding/genetics , Transcription Factor AP-1/genetics
18.
Nat Cell Biol ; 24(5): 685-696, 2022 05.
Article in English | MEDLINE | ID: mdl-35513710

ABSTRACT

Acute trauma stimulates local repair mechanisms but can also impact structures distant from the injury, for example through the activity of circulating factors. To study the responses of remote tissues during tissue regeneration, we profiled transcriptomes of zebrafish brains after experimental cardiac damage. We found that the transcription factor gene cebpd was upregulated remotely in brain ependymal cells as well as kidney tubular cells, in addition to its local induction in epicardial cells. cebpd mutations altered both local and distant cardiac injury responses, altering the cycling of epicardial cells as well as exchange between distant fluid compartments. Genome-wide profiling and transgenesis identified a hormone-responsive enhancer near cebpd that exists in a permissive state, enabling rapid gene expression in heart, brain and kidney after cardiac injury. Deletion of this sequence selectively abolished cebpd induction in remote tissues and disrupted fluid regulation after injury, without affecting its local cardiac expression response. Our findings suggest a model to broaden gene function during regeneration in which enhancer regulatory elements define short- and long-range expression responses to injury.


Subject(s)
Gene Expression Regulation , Zebrafish , Animals , Enhancer Elements, Genetic/genetics , Heart , Transcriptome , Zebrafish/genetics , Zebrafish/metabolism
19.
Genes Dis ; 8(2): 203-214, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33997167

ABSTRACT

Colorectal cancer is a leading cause of cancer deaths. Most colorectal cancer patients eventually develop chemoresistance to the current standard-of-care therapies. Here, we used patient-derived colorectal cancer organoids to demonstrate that resistant tumor cells undergo significant chromatin changes in response to oxaliplatin treatment. Integrated transcriptomic and chromatin accessibility analyses using ATAC-Seq and RNA-Seq identified a group of genes associated with significantly increased chromatin accessibility and upregulated gene expression. CRISPR/Cas9 silencing of fibroblast growth factor receptor 1 (FGFR1) and oxytocin receptor (OXTR) helped overcome oxaliplatin resistance. Similarly, treatment with oxaliplatin in combination with an FGFR1 inhibitor (PD166866) or an antagonist of OXTR (L-368,899) suppressed chemoresistant organoids. However, oxaliplatin treatment did not activate either FGFR1 or OXTR expression in another resistant organoid, suggesting that chromatin accessibility changes are patient-specific. The use of patient-derived cancer organoids in combination with transcriptomic and chromatin profiling may lead to precision treatments to overcome chemoresistance in colorectal cancer.

20.
Mol Neurodegener ; 16(1): 58, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429139

ABSTRACT

BACKGROUND: In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of late-onset Alzheimer's disease (LOAD) and translate the associations to causation. METHODS: We conducted ATAC-seq profiling using NeuN sorted-nuclei from 40 frozen brain tissues to determine LOAD-specific changes in chromatin accessibility landscape in a cell-type specific manner. RESULTS: We identified 211 LOAD-specific differential chromatin accessibility sites in neuronal-nuclei, four of which overlapped with LOAD-GWAS regions (±100 kb of SNP). While the non-neuronal nuclei did not show LOAD-specific differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in females. Seven of these sex-dependent sites in the non-neuronal samples overlapped LOAD-GWAS regions including APOE. LOAD loci were functionally validated using single-nuclei RNA-seq datasets. CONCLUSIONS: Using brain sorted-nuclei enabled the identification of sex-dependent cell type-specific LOAD alterations in chromatin structure. These findings enhance the interpretation of LOAD-GWAS discoveries, provide potential pathomechanisms, and suggest novel LOAD-loci.


Subject(s)
Alzheimer Disease/genetics , Chromatin/ultrastructure , Neuroglia/ultrastructure , Sex Characteristics , Aged , Aged, 80 and over , Base Sequence , Binding Sites , Cell Fractionation/methods , Cell Nucleus/ultrastructure , Chromatin/genetics , Datasets as Topic , Female , Flow Cytometry , Gene Expression , Gene Library , Genome-Wide Association Study , Humans , Male , Middle Aged , Neurons/ultrastructure , Single-Cell Analysis , Temporal Lobe/ultrastructure , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL