ABSTRACT
The relation between signal and background noise strengths in single-photon avalanche diode (SPAD)-based pulsed time-of-flight 3-D range imaging is analyzed on the assumption that the SPAD detector is operating in the single photon detection mode. Several practical measurement cases using a 256-pixel solid-state pulsed time-of-flight (TOF) line profiler are presented and analyzed in the light of the resulting analysis. It is shown that in this case it is advantageous to concentrate the available optical average power in short, intensive pulses and to focus the optical energy in spatial terms. In 3-D range imaging, this could be achieved by using block-based illumination instead of the regularly used flood illumination. One modification of this approach could be a source that would illuminate the system FOV only in narrow laser stripes. It is shown that a 256-pixel SPAD-based pulsed TOF line profiler following these design principles can achieve a measurement range of 5-10 m to non-cooperative targets at a rate of ~10 lines/s under bright sunlight conditions using an average optical power of only 260 µW.
ABSTRACT
The gene for spinocerebellar ataxia type 2 (SCA2) has been mapped to 12q24.1. A 1.1-megabase contig in the candidate region was assembled in P1 artificial chromosome and bacterial artificial chromosome clones. Using this contig, we identified a CAG trinucleotide repeat with CAA interruptions that was expanded in patients with SCA2. In contrast to other unstable trinucleotide repeats, this CAG repeat was not highly polymorphic in normal individuals. In SCA2 patients, the repeat was perfect and expanded to 36-52 repeats. The most common disease allele contained (CAG)37, one of the shortest expansions seen in a CAG expansion syndrome. The repeat occurs in the 5'-coding region of SCA2 which is a member of a novel gene family.
Subject(s)
Chromosomes, Human, Pair 12 , Proteins/genetics , Spinocerebellar Degenerations/genetics , Trinucleotide Repeats , Amino Acid Sequence , Ataxins , Base Sequence , Chromosome Mapping , DNA, Complementary/isolation & purification , Gene Expression Regulation , Humans , Molecular Sequence Data , Nerve Tissue Proteins , Sequence Analysis, DNA , Sequence Homology, Amino AcidABSTRACT
Systemic juvenile idiopathic arthritis (sJIA, also called Still's disease) is a rare childhood auto-inflammatory disease with significant morbidity. This case report illustrates the clinical course and highlights diagnostic challenges. FDG-PET/CT imaging may be beneficial in the diagnostic process for some cases, in order to achieve rapid diagnosis and early treatment.
ABSTRACT
Spinocerebellar ataxia type 2 (SCA2) is a member of a group of neurodegenerative diseases that are caused by instability of a DNA CAG repeat. We report the genomic structure of the SCA2 gene. Its 25 exons, encompassing approximately 130 kb of genomic DNA, were mapped onto the physical map of the region. Exonic sizes varied from 37 to 890 bp, and intronic sizes ranged from 323 bp to more than 15 kb. The CAG repeat was contained in the 5' coding region of the gene in exon 1. Determination of the splice junction sequences indicated the presence of only one deviation from the GT-AG rule at the donor splice site of intron 9, which contained a GC instead of a GT dinucleotide. Exon 10, immediately downstream from this rare splice donor site, was alternatively spliced. Alternative splicing does not affect the reading frame and is predicted to encode an isoform containing 70 amino acids less.
Subject(s)
Chromosomes, Human, Pair 12/genetics , Proteins/genetics , Spinocerebellar Degenerations/genetics , Alternative Splicing , Ataxins , Chromosome Mapping , Cloning, Molecular , Exons , Genetic Markers , Humans , Introns , Microsatellite Repeats , Nerve Tissue ProteinsABSTRACT
Spinocerebellar ataxia type 2 (SCA2) is caused by expansion of a CAG trinucleotide repeat located in the coding region of the human SCA2 gene. Sequence analysis revealed that SCA2 is a novel gene of unknown function. In order to provide insights into the molecular mechanisms of pathogenesis of SCA2 and to identify conserved domains, we isolated and characterized the mouse homolog of the SCA2 gene. Sequence and amino acid analysis revealed 89% identity at the nucleotide and 91% identity at the amino acid level. However, there was no extended polyglutamine tract in the mouse SCA2 cDNA, suggesting that the normal function of SCA2 is not dependent on this domain. Northern blot analysis of different mouse tissues indicated that the mouse SCA2 gene was expressed in most tissues, but at varying levels. Alternative splicing seen in human SCA2 was conserved in the mouse. By northern blot analysis, SCA2 was expressed during embryogenesis as early as day 8 of gestation (E8). Immunohistochemical staining using affinity-purified antibodies demonstrated that ataxin 2 was expressed in the cytoplasm of Purkinje cells as well as in other neurons of the CNS.
Subject(s)
Alternative Splicing , DNA, Complementary/genetics , Protein Biosynthesis , Proteins/genetics , Spinocerebellar Degenerations/genetics , Amino Acid Sequence , Animals , Ataxins , Base Sequence , Humans , Mice , Molecular Sequence Data , Nerve Tissue Proteins , Sequence Alignment , Sequence Analysis , Trinucleotide Repeats/geneticsABSTRACT
The spinocerebellar ataxia type 2 (SCA2) gene has been localized to chromosome 12q24.1. To characterize this region and to aid in the identification of the SCA2 gene, we have constructed a 3.9-Mb physical map, which covers markers D12S1328 and D12S1329 known to flank the gene. The map comprises a contig of 84 overlapping yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) onto which we placed 82 PCR markers. We localized eight genes and expressed sequence tags on this map, many of which had not been precisely mapped before. In contrast to YACs, which showed a high degree of chimerism and deletions in this region, PACs and BACs were stable. Only 1 in 65 PACs contained a small deletion, and 2 in 18 BACs were chimeric. The high-resolution physical map, which was used in the identification of the SCA2 gene, will be useful for the positional cloning of other disease genes mapped to this region.