Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Publication year range
1.
J Med Genet ; 61(6): 590-594, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38228391

ABSTRACT

Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored. Methods We conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES. Results Ten patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features. Conclusion Molecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.


Subject(s)
Beckwith-Wiedemann Syndrome , Exome Sequencing , Humans , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/pathology , Beckwith-Wiedemann Syndrome/diagnosis , Male , Female , Infant , Child, Preschool , Child , Phenotype , Growth Disorders/genetics , Growth Disorders/pathology , Genetic Variation , Mutation/genetics
2.
Am J Physiol Renal Physiol ; 326(5): F780-F791, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482553

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease before the age of 25 yr. Nephrin, encoded by NPHS1, localizes to the slit diaphragm of glomerular podocytes and is the predominant structural component of the glomerular filtration barrier. Biallelic variants in NPHS1 can cause congenital nephrotic syndrome of the Finnish type, for which, to date, no causative therapy is available. Recently, adeno-associated virus (AAV) vectors targeting the glomerular podocyte have been assessed as a means for gene replacement therapy. Here, we established quantitative and reproducible phenotyping of a published, conditional Nphs1 knockout mouse model (Nphs1tm1.1Pgarg/J and Nphs2-Cre+) in preparation for a gene replacement study using AAV vectors. Nphs1 knockout mice (Nphs1fl/fl Nphs2-Cre+) exhibited 1) a median survival rate of 18 days (range: from 9 to 43 days; males: 16.5 days and females: 20 days); 2) an average foot process (FP) density of 1.0 FP/µm compared with 2.0 FP/µm in controls and a mean filtration slit density of 2.64 µm/µm2 compared with 4.36 µm/µm2 in controls; 3) a high number of proximal tubular microcysts; 4) the development of proteinuria within the first week of life as evidenced by urine albumin-to-creatinine ratios; and 5) significantly reduced levels of serum albumin and elevated blood urea nitrogen and creatinine levels. For none of these phenotypes, significant differences between sexes in Nphs1 knockout mice were observed. We quantitatively characterized five different phenotypic features of congenital nephrotic syndrome in Nphs1fl/fl Nphs2-Cre+ mice. Our results will facilitate future gene replacement therapy projects by allowing for sensitive detection of even subtle molecular effects.NEW & NOTEWORTHY To evaluate potential, even subtle molecular, therapeutic effects of gene replacement therapy (GRT) in a mouse model, prior rigorous quantifiable and reproducible disease phenotyping is necessary. Here, we, therefore, describe such a phenotyping effort in nephrin (Nphs1) knockout mice to establish the basis for GRT for congenital nephrotic syndrome. We believe that our findings set an important basis for upcoming/ongoing gene therapy approaches in the field of nephrology, especially for monogenic nephrotic syndrome.


Subject(s)
Membrane Proteins , Mice, Knockout , Nephrotic Syndrome , Phenotype , Podocytes , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female , Male , Nephrotic Syndrome/genetics , Nephrotic Syndrome/therapy , Podocytes/metabolism , Disease Models, Animal , Genetic Therapy/methods , Mice , Genetic Vectors
3.
Genet Med ; 25(1): 90-102, 2023 01.
Article in English | MEDLINE | ID: mdl-36318270

ABSTRACT

PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.


Subject(s)
Brain Diseases , Dystonia , Movement Disorders , Humans , Animals , Rats , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism , Movement Disorders/genetics , Amines , Brain/metabolism
4.
Genet Med ; 25(1): 49-62, 2023 01.
Article in English | MEDLINE | ID: mdl-36322151

ABSTRACT

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Mice , Animals , Humans , DNA Methylation/genetics , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , DNA , Mutation
5.
J Med Genet ; 59(5): 511-516, 2022 05.
Article in English | MEDLINE | ID: mdl-34183358

ABSTRACT

PURPOSE: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gßγ units. Human diseases have been reported for all five Gß proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort. METHODS: We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants. RESULTS: We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction. CONCLUSION: Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , GTP-Binding Proteins/genetics , Humans , Intellectual Disability/genetics , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Exome Sequencing
6.
Hum Genet ; 141(2): 283-293, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35031858

ABSTRACT

GRIA3 at Xq25 encodes glutamate ionotropic receptor AMPA type 3 (GluA3), a subunit of postsynaptic glutamate-gated ion channels mediating neurotransmission. Hemizygous loss-of-function (LOF) variants in GRIA3 cause a neurodevelopmental disorder (NDD) in male individuals. Here, we report a gain-of-function (GOF) variant at GRIA3 in a male patient. We identified a hemizygous de novo missense variant in GRIA3 in a boy with an NDD: c.1844C > T (p.Ala615Val) using whole-exome sequencing. His neurological signs, such as hypertonia and hyperreflexia, were opposite to those in previous cases having LOF GRIA3 variants. His seizures and hypertonia were ameliorated by carbamazepine, inhibiting glutamate release from presynapses. Patch-clamp recordings showed that the human GluA3 mutant (p.Ala615Val) had slower desensitization and deactivation kinetics. A fly line expressing a human GluA3 mutant possessing our variant and the Lurcher variant, which makes ion channels leaky, showed developmental defects, while one expressing a mutant possessing either of them did not. Collectively, these results suggest that p.Ala615Val has GOF effects. GRIA3 GOF variants may cause an NDD phenotype distinctive from that of LOF variants, and drugs suppressing glutamatergic neurotransmission may ameliorate this phenotype. This study should help in refining the clinical management of GRIA3-related NDDs.


Subject(s)
Carbamazepine/therapeutic use , Excitatory Amino Acid Antagonists/therapeutic use , Gain of Function Mutation , Neurodevelopmental Disorders/drug therapy , Neurodevelopmental Disorders/genetics , Receptors, AMPA/genetics , Amino Acid Substitution , Animals , Animals, Genetically Modified , Child, Preschool , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , HEK293 Cells , Humans , Male , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Neurodevelopmental Disorders/metabolism , Patch-Clamp Techniques , Phenotype , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Hum Genet ; 141(11): 1771-1784, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35503477

ABSTRACT

Pigmentary mosaicism of the Ito type, also known as hypomelanosis of Ito, is a neurocutaneous syndrome considered to be predominantly caused by somatic chromosomal mosaicism. However, a few monogenic causes of pigmentary mosaicism have been recently reported. Eleven unrelated individuals with pigmentary mosaicism (mostly hypopigmented skin) were recruited for this study. Skin punch biopsies of the probands and trio-based blood samples (from probands and both biological parents) were collected, and genomic DNA was extracted and analyzed by exome sequencing. In all patients, plausible monogenic causes were detected with somatic and germline variants identified in five and six patients, respectively. Among the somatic variants, four patients had MTOR variant (36%) and another had an RHOA variant. De novo germline variants in USP9X, TFE3, and KCNQ5 were detected in two, one, and one patients, respectively. A maternally inherited PHF6 variant was detected in one patient with hyperpigmented skin. Compound heterozygous GTF3C5 variants were highlighted as strong candidates in the remaining patient. Exome sequencing, using patients' blood and skin samples is highly recommended as the first choice for detecting causative genetic variants of pigmentary mosaicism.


Subject(s)
Hypopigmentation , Mosaicism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Humans , Hypopigmentation/genetics , TOR Serine-Threonine Kinases/genetics , Ubiquitin Thiolesterase/genetics
8.
J Hum Genet ; 67(1): 1-7, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34230591

ABSTRACT

Heterozygous variants in CLTC, which encode the clathrin heavy chain protein, cause neurodevelopmental delay of varying severity, and often accompanied by dysmorphic features, seizures, hypotonia, and ataxia. To date, 28 affected individuals with CLTC variants have been reported, although their phenotypes have not been fully elucidated. Here, we report three novel de novo CLTC (NM_001288653.1) variants in three individuals with previously unreported clinical symptoms: c.3662_3664del:p.(Leu1221del) in individual 1, c.2878T>C:p.(Trp960Arg) in individual 2, and c.2430+1G>T:p.(Glu769_Lys810del) in individual 3. Consistent with previous reports, individuals with missense or small in-frame variants were more severely affected. Unreported symptoms included a brain defect (cystic lesions along the lateral ventricles of the brain in individuals 1 and 3), kidney findings (high-echogenic kidneys in individual 1 and agenesis of the left kidney and right vesicoureteral reflux in individual 3), respiratory abnormality (recurrent pneumonia in individual 1), and abnormal hematological findings (anemia in individual 1 and pancytopenia in individual 3). Of note, individual 1 even exhibited prenatal abnormality (fetal growth restriction, cystic brain lesions, high-echogenic kidneys, and a heart defect), suggesting that CLTC variants should be considered when abnormal prenatal findings in multiple organs are detected.


Subject(s)
Brain , Clathrin Heavy Chains/genetics , Genetic Variation , Kidney , Phenotype , Alleles , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Mutation
9.
Hum Mutat ; 42(1): 50-65, 2021 01.
Article in English | MEDLINE | ID: mdl-33131168

ABSTRACT

Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.


Subject(s)
DNA Copy Number Variations , Exome , Algorithms , Exome/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Reproducibility of Results , Exome Sequencing
10.
Am J Hum Genet ; 103(2): 305-316, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30057029

ABSTRACT

Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.


Subject(s)
F-Box Proteins/genetics , Genetic Variation/genetics , Neurodevelopmental Disorders/genetics , Protein-Arginine N-Methyltransferases/genetics , Child , Exome/genetics , Female , Genetic Association Studies/methods , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Proteasome Endopeptidase Complex/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Exome Sequencing/methods
11.
Clin Genet ; 100(6): 722-730, 2021 12.
Article in English | MEDLINE | ID: mdl-34569062

ABSTRACT

Cerebellar ataxia is a genetically heterogeneous disorder. GEMIN5 encoding an RNA-binding protein of the survival of motor neuron complex, is essential for small nuclear ribonucleoprotein biogenesis, and it was recently reported that biallelic loss-of-function variants cause neurodevelopmental delay, hypotonia, and cerebellar ataxia. Here, whole-exome analysis revealed compound heterozygous GEMIN5 variants in two individuals from our cohort of 162 patients with cerebellar atrophy/hypoplasia. Three novel truncating variants and one previously reported missense variant were identified: c.2196dupA, p.(Arg733Thrfs*6) and c.1831G > A, p.(Val611Met) in individual 1, and c.3913delG, p.(Ala1305Leufs*14) and c.4496dupA, p.(Tyr1499*) in individual 2. Western blotting analysis using lymphoblastoid cell lines derived from both affected individuals showed significantly reduced levels of GEMIN5 protein. Zebrafish model for null variants p.(Arg733Thrfs*6) and p.(Ala1305Leufs*14) exhibited complete lethality at 2 weeks and recapitulated a distinct dysplastic phenotype. The phenotypes of affected individuals and the zebrafish mutant models strongly suggest that biallelic loss-of-function variants in GEMIN5 cause cerebellar atrophy/hypoplasia.


Subject(s)
Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Phenotype , SMN Complex Proteins/genetics , Animals , Brain/abnormalities , Brain/diagnostic imaging , Disease Models, Animal , Facies , Genetic Association Studies/methods , Humans , Loss of Function Mutation , Magnetic Resonance Imaging , Models, Molecular , Motor Neurons/metabolism , Nonsense Mediated mRNA Decay , Pedigree , Protein Conformation , SMN Complex Proteins/chemistry , Structure-Activity Relationship , Exome Sequencing , Zebrafish
12.
Hum Mutat ; 41(3): 591-599, 2020 03.
Article in English | MEDLINE | ID: mdl-31821646

ABSTRACT

RHOA is a member of the Rho family of GTPases that are involved in fundamental cellular processes including cell adhesion, migration, and proliferation. RHOA can stimulate the formation of stress fibers and focal adhesions and is a key regulator of actomyosin dynamics in various tissues. In a Genematcher-facilitated collaboration, we were able to identify four unrelated individuals with a specific phenotype characterized by hypopigmented areas of the skin, dental anomalies, body asymmetry, and limb length discrepancy due to hemihypotrophy of one half of the body, as well as brain magnetic resonance imaging (MRI) anomalies. Using whole-exome and ultra-deep amplicon sequencing and comparing genomic data of affected and unaffected areas of the skin, we discovered that all four individuals carried the identical RHOA missense variant, c.139G>A; p.Glu47Lys, in a postzygotic state. Molecular modeling and in silico analysis of the affected p.Glu47Lys residue in RHOA indicated that this exchange is predicted to specifically alter the interaction of RHOA with its downstream effectors containing a PKN-type binding domain and thereby disrupts its ability to activate signaling. Our findings indicate that the recurrent postzygotic RHOA missense variant p.Glu47Lys causes a specific mosaic disorder in humans.


Subject(s)
Alleles , Codon , Genetic Association Studies , Genetic Variation , Neural Plate/metabolism , Phenotype , rhoA GTP-Binding Protein/genetics , Adolescent , Adult , Brain/abnormalities , Brain/diagnostic imaging , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Models, Molecular , Neural Plate/abnormalities , Neural Plate/embryology , Protein Conformation , Structure-Activity Relationship , Young Adult , rhoA GTP-Binding Protein/chemistry
13.
J Hum Genet ; 65(10): 847-853, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32451492

ABSTRACT

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder characterized by obesity, mental impairment, rod-cone dystrophy, polydactyly, male hypogonadism, and renal abnormalities. This disorder is caused by mutations in BBS1-21. Alström syndrome (AS), caused solely by mutations in ALMS1, is another genetic obesity syndrome clinically similar to BBS. We previously conducted the first nationwide survey of BBS in Japan and found four patients with genetically definite BBS. In this study, exome analyses were performed on new patients whose symptoms fulfilled the diagnostic criteria for BBS. We identified one reported heterozygous mutation in BBS1 (p.R429*) in one patient, two novel mutations (p.L493R and p.H719Y) in BBS20 in a second patient, and one novel mutation (p.Q920*) and one reported mutation (p.R2928*) in ALMS1 in a third patient, who was subsequently diagnosed with AS. The first patient with BBS was previously considered to have digenic heterozygous mutations in BBS1 and BBS4. RT-PCR and long-range genomic PCR analyses identified a new heterozygous mutation in BBS1, the deletion of exons 10 and 11. Thus, this patient was compound heterozygous for mutations in BBS1. Many studies have described digenic heterozygous mutations in BBS. However, undetected mutations might have existed in either one of the mutated genes.


Subject(s)
Bardet-Biedl Syndrome/epidemiology , Mutation, Missense , Point Mutation , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adult , Alstrom Syndrome/epidemiology , Alstrom Syndrome/genetics , Bardet-Biedl Syndrome/genetics , Cell Cycle Proteins/genetics , Child , Child, Preschool , Cytoskeletal Proteins/genetics , Exons/genetics , Female , Humans , Japan/epidemiology , Male , Microtubule-Associated Proteins/genetics , Exome Sequencing , Young Adult
14.
Clin Exp Nephrol ; 24(11): 1069-1076, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32720203

ABSTRACT

BACKGROUND: Immunization with various vaccines is considered desirable for children with idiopathic nephrotic syndrome (NS) because of their high risk of severe infections. Vaccinations may precipitate relapses of NS, but there is no available data regarding inactivated influenza (flu) virus vaccines. METHODS: We retrospectively reviewed the medical records of children with NS who had received flu vaccines between 2002 and 2015. The day of flu vaccination was defined as day 0, and the period between the pre-vaccination and the post-vaccination days was defined as - X to + Y. The risk ratios and their 95% confidence intervals for NS relapse rate were estimated by generalized estimating equation (GEE) Poisson regression. RESULTS: A total of 104 pediatric patients received 208 flu vaccines. The mean age at onset of NS was at 4.85 ± 3.87 years old. There were 261 NS relapses between days - 180 and + 180. Compared with the relapse rate in the - 180 to 0 interval (1.19 times/person-year), those in 0 to + 30 (1.23), + 31 to + 60 (1.58), + 61 to + 90 (1.41), + 91 to + 120 (1.41), and + 121 to + 180 (1.32) days groups were slightly increased, but without significance. Multivariate analysis using GEE Poisson regression also showed no significant increase in relapse rate in each day group compared with days - 180 to 0. Risk ratios for NS relapse were significantly higher in children who were treated with steroids at the first vaccination. CONCLUSIONS: Our results suggest that flu vaccines should not be avoided in children with NS based on the potential for NS relapses.


Subject(s)
Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Nephrotic Syndrome/etiology , Vaccination/adverse effects , Age of Onset , Child , Child, Preschool , Female , Humans , Infant , Male , Odds Ratio , Recurrence , Retrospective Studies
15.
Pediatr Int ; 62(8): 937-943, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32153091

ABSTRACT

BACKGROUND: Despite advances in non-invasive vascular imaging, detection of renal artery stenosis via catheter angiography is the criterion standard for the diagnosis of renovascular hypertension (RVH). However, because of lack of evidence, the utility of various blood tests and imaging modalities remains unclear. METHODS: We retrospectively analyzed the utility of blood tests (plasma renin activity [PRA], aldosterone, and renal vein renin [RVR] values) and imaging studies (computed tomography angiography [CTA], kidney ultrasonography [US]) by comparing them with catheter angiography. Ten pediatric patients with RVH at two institutions from January 2008 to December 2017 were recruited. The sensitivities for diagnosing RVH via imaging and blood tests (kidney [US], PRA, and aldosterone) were derived by examining patient records. Furthermore, the sensitivity and specificity of CT angiography were calculated by considering both the affected and non-affected renal arteries of the patients. RESULTS: A high sensitivity for diagnosing RVH via kidney US (89%) and PRA (80%) was observed. The sensitivity and specificity of CTA were 100%, each. RVR sampling did not aid in the diagnosis of RVH; only two of six patients with unilateral RVH showed significant laterality of RVR boundary ratios. Renal scintigraphy facilitated detection of a non-functional kidney (split renal function <5%). CONCLUSIONS: RVH in children could be diagnosed utilizing non-invasive blood and imaging tests, without catheter angiography. We recommend kidney length measurement along with measurement of PRA level, as a simple and highly useful screening test, followed by CTA as a diagnostic test.


Subject(s)
Hypertension, Renovascular/diagnosis , Aldosterone/blood , Catheterization/methods , Child , Child, Preschool , Computed Tomography Angiography/methods , Female , Humans , Hypertension, Renovascular/blood , Hypertension, Renovascular/diagnostic imaging , Kidney/diagnostic imaging , Male , Renal Artery Obstruction/diagnosis , Renal Veins , Renin/blood , Retrospective Studies , Sensitivity and Specificity , Ultrasonography/methods
16.
J Hum Genet ; 64(9): 885-890, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31270375

ABSTRACT

Pediatric hypertension can cause hypertensive emergencies, including hemorrhagic stroke, contributing to rare but serious childhood morbidity and mortality. Renovascular hypertension (RVH) is one of the major causes of secondary hypertension in children. Grange syndrome (MIM#602531) is a rare disease characterized by multiple stenosis or occlusion of the renal, abdominal, coronary, and cerebral arteries, which can cause phenotypes of RVH and fibromuscular dysplasia (MIM#135580). We report the case of a 7-year-old girl with Grange syndrome who showed RVH and multiple seizure episodes. At 1 year of age, she experienced seizures and sequential hemiparesis caused by a left thalamic hemorrhage without cerebral vascular anomalies. Chronic hypertension was observed, and abdominal computed tomography angiography showed characteristic bilateral renal artery stenosis. Whole-exome sequencing revealed a novel homozygous pathogenic variant in the YY1AP1 gene (NM_001198903.1: c.1169del: p.Lys390Argfs*12). Biallelic YY1AP1 mutations are known to cause Grange syndrome. Unlike previously reported patients, our patient presented with intracerebral hemorrhagic stroke without anomalous brain artery or bone fragility. The phenotype in our patient may help better understand this ultra-rare syndrome. Grange syndrome should be considered in patients presenting with childhood-onset hypertension and/or hemorrhagic stroke for early clinical intervention.


Subject(s)
Amino Acid Sequence , Arterial Occlusive Diseases/genetics , Bone and Bones/abnormalities , Brachydactyly/genetics , Cell Cycle Proteins/genetics , Heart Defects, Congenital/genetics , Hypertension, Renovascular/genetics , Hypertension/genetics , Intracranial Hemorrhages/genetics , Sequence Deletion , Stroke/genetics , Syndactyly/genetics , Transcription Factors/genetics , Arterial Occlusive Diseases/pathology , Arterial Occlusive Diseases/physiopathology , Bone and Bones/pathology , Bone and Bones/physiopathology , Brachydactyly/pathology , Brachydactyly/physiopathology , Child , Female , Heart Defects, Congenital/pathology , Heart Defects, Congenital/physiopathology , Homozygote , Humans , Hypertension/pathology , Hypertension/physiopathology , Hypertension, Renovascular/pathology , Hypertension, Renovascular/physiopathology , Intracranial Hemorrhages/pathology , Intracranial Hemorrhages/physiopathology , Stroke/pathology , Stroke/physiopathology , Syndactyly/pathology , Syndactyly/physiopathology
17.
Am J Med Genet A ; 179(3): 338-340, 2019 03.
Article in English | MEDLINE | ID: mdl-30569574

ABSTRACT

SOFT syndrome (MIM614813) is an extremely rare primordial dwarfism caused by biallelic mutations in the POC1A gene. It is characterized by prenatal short stature, onychodysplasia, facial dysmorphism, hypotrichosis, and variable skeletal abnormalities including hypoplastic pelvis and sacrum, small hands, and cone-shaped epiphyses, as well as delayed bone age. To the best of our knowledge, only eight POC1A mutations have been reported in humans to date. We report a 7-year-old Chilean girl with SOFT syndrome arising from a novel POC1A mutation c. 649C>T, p.Arg217Trp. Although her clinical features were largely compatible with SOFT syndrome, hand X-ray examinations at 3.5 and 6 years unexpectedly showed normal bone age. Automated bone age determination was performed using image analysis software, BoneXpert. This case highlights the importance of the accumulation of patients with POC1A mutations to further elucidate the detailed clinical features of SOFT syndrome.


Subject(s)
Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Dwarfism/diagnosis , Dwarfism/genetics , Mutation , Child , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Humans , Phenotype , Syndrome , Whole Genome Sequencing
18.
Nephrology (Carlton) ; 23(6): 592-596, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28976051

ABSTRACT

Children with systemic lupus erythematosus (SLE) generally undergo a pretreatment kidney biopsy. However, some of these patients, especially those with antiphospholipid syndrome (APS), may experience serious coagulopathic complications. We report herein two cases of paediatric SLE with APS in which, despite normal blood test results, the disparate coagulopathic complications of haemorrhage and embolism developed following a kidney biopsy. Case 1 was, an 8-year-old male in whom, primary APS was initially diagnosed. Fourteen months later SLE was diagnosed. Based on a percutaneous kidney biopsy, International Society of Nephrology and the Renal Pathology Society (ISN/RPS) class III-A lupus nephritis was histologically diagnosed. On post-biopsy Day 9, a giant haematoma in the fascia of the left kidney developed and was accompanied by changes in the vital signs. Case 2, a 13-year-old male, initially received the diagnosis of SLE with APS and underwent two courses of pulse methylprednisolone therapy. His coagulation abnormalities improved, and a percutaneous needle kidney biopsy was performed, leading to the histological diagnosis of ISN/RPS class III-A lupus nephritis. Furthermore, thrombotic microangiopathy was also detected in the renal histopathology. On post biopsy Day 6, the patient experienced right leg pain. A contrast CT and lower extremity ultrasonography detected a massive deep vein thrombosis and partial left pulmonary artery thrombosis. A kidney biopsy in children with SLE and APS can cause lethal coagulopathic complications, and the risks to such patients should be weighed carefully before the procedure is performed.


Subject(s)
Antiphospholipid Syndrome/complications , Arterial Occlusive Diseases/etiology , Biopsy/adverse effects , Hematoma/etiology , Kidney/pathology , Lupus Erythematosus, Systemic/complications , Lupus Nephritis/etiology , Venous Thrombosis/etiology , Adolescent , Age of Onset , Anticoagulants/therapeutic use , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/drug therapy , Arterial Occlusive Diseases/blood , Arterial Occlusive Diseases/diagnosis , Arterial Occlusive Diseases/drug therapy , Blood Coagulation , Child , Glucocorticoids/therapeutic use , Hematoma/blood , Hematoma/diagnosis , Hematoma/drug therapy , Humans , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/drug therapy , Lupus Nephritis/pathology , Male , Risk Factors , Tomography, X-Ray Computed , Ultrasonography, Doppler, Color , Venous Thrombosis/blood , Venous Thrombosis/diagnosis , Venous Thrombosis/drug therapy
19.
BMC Nephrol ; 19(1): 365, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30558570

ABSTRACT

BACKGROUND: Bordetella pertussis infection is a known trigger of atypical hemolytic uremic syndrome (HUS). For patients suspected of having atypical HUS, prompt plasma exchange/infusion (PE/PI) or eculizumab (ECZ) treatment is recommended. CASE PRESENTATION: We report a 1-month-old female infant who was admitted with a severe cough and a B. pertussis-positive sputum culture. She was born at 38 weeks gestation and did not have a family history of renal diseases. Hemophagocytic syndrome was suspected and she was transferred to our hospital 17 days after her initial admission. One day later, she developed acute kidney injury and was diagnosed with HUS triggered by B. pertussis infection. Her plasma complement levels were low and her kidney function continued to worsen over the next few days. However, prior to starting ECZ treatment, her kidney function improved spontaneously; she did not receive PE/PI or ECZ. She was discharged 46 days after her initial hospitalization, without complications. A genetic workup revealed no mutations in CFH, CFI, CFB, C3, MCP, THBD, or DGKE. CONCLUSIONS: This case demonstrates that B. pertussis infection-related HUS may resolve spontaneously. The decision to treat during the acute phase is challenging because B. pertussis often affects infants suspected of having atypical HUS. However, ECZ may not be the first treatment option for patients with B. pertussis infection-related HUS unless they show an indicated genetic abnormality; if ECZ is used, early discontinuation should be considered.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Complement Inactivating Agents/therapeutic use , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/therapy , Plasma Exchange , Whooping Cough/complications , Bordetella pertussis , Female , Humans , Infant , Remission, Spontaneous
20.
Nephrology (Carlton) ; 22(7): 566-571, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28621010

ABSTRACT

WDR19 has been reported as a causative gene of nephronophthisis-related ciliopathies. Patients with WDR19 mutations can show various extrarenal manifestations such as skeletal disorders, Caroli disease, and retinal dystrophy, and typically display nephronophthisis as a renal phenotype. However, there is limited information on the renal phenotypes of patients with WDR19 mutations. We report two Japanese infants with Sensenbrenner syndrome caused by WDR19 mutations who demonstrated different features in renal ultrasound and histopathological results, despite several common extrarenal manifestations. Patient 1 had normal sized and hyperechogenic kidneys with several small cysts and histopathological findings compatible with infantile nephronophthisis. Renal ultrasound of Patient 2 showed enlarged kidneys with diffuse microcysts resembling those of autosomal recessive polycystic kidney disease. Her renal histopathology revealed dysplastic kidney with diffuse glomerular cysts. Genetic testing identified compound heterozygous mutations in WDR19 in both patients (Patient 1: c.953delA, c.3533G > A, Patient 2: c.2645 + 1G > T, c.3533G > A). Our patients suggest that WDR19 mutations can cause dysplastic kidney in addition to nephronophthisis pathologically. In addition, differences in pathology of the kidneys from WDR19 mutations may result in heterogeneous features in renal ultrasound findings. Renal phenotypes from WDR19 mutations may thus be more diverse than previously reported. Extrarenal manifestations and genetic testing can therefore help to diagnosis this disease more precisely.


Subject(s)
Bone and Bones/abnormalities , Craniosynostoses/genetics , Ectodermal Dysplasia/genetics , Kidney Diseases, Cystic/genetics , Kidney/abnormalities , Mutation , Polycystic Kidney, Autosomal Recessive/genetics , Proteins/genetics , Biopsy , Child, Preschool , Craniosynostoses/diagnosis , Craniosynostoses/therapy , Cytoskeletal Proteins , DNA Mutational Analysis , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/therapy , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Intracellular Signaling Peptides and Proteins , Kidney/diagnostic imaging , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/therapy , Magnetic Resonance Imaging , Phenotype , Polycystic Kidney, Autosomal Recessive/diagnosis , Polycystic Kidney, Autosomal Recessive/therapy , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL