ABSTRACT
BACKGROUND: Intermittent preventive treatment in pregnancy (IPTp) with dihydroartemisinin-piperaquine is more effective than IPTp with sulfadoxine-pyrimethamine at reducing malaria infection during pregnancy in areas with high-grade resistance to sulfadoxine-pyrimethamine by Plasmodium falciparum in east Africa. We aimed to assess whether IPTp with dihydroartemisinin-piperaquine, alone or combined with azithromycin, can reduce adverse pregnancy outcomes compared with IPTp with sulfadoxine-pyrimethamine. METHODS: We did an individually randomised, double-blind, three-arm, partly placebo-controlled trial in areas of high sulfadoxine-pyrimethamine resistance in Kenya, Malawi, and Tanzania. HIV-negative women with a viable singleton pregnancy were randomly assigned (1:1:1) by computer-generated block randomisation, stratified by site and gravidity, to receive monthly IPTp with sulfadoxine-pyrimethamine (500 mg of sulfadoxine and 25 mg of pyrimethamine for 1 day), monthly IPTp with dihydroartemisinin-piperaquine (dosed by weight; three to five tablets containing 40 mg of dihydroartemisinin and 320 mg of piperaquine once daily for 3 consecutive days) plus a single treatment course of placebo, or monthly IPTp with dihydroartemisinin-piperaquine plus a single treatment course of azithromycin (two tablets containing 500 mg once daily for 2 consecutive days). Outcome assessors in the delivery units were masked to treatment group. The composite primary endpoint was adverse pregnancy outcome, defined as fetal loss, adverse newborn baby outcomes (small for gestational age, low birthweight, or preterm), or neonatal death. The primary analysis was by modified intention to treat, consisting of all randomised participants with primary endpoint data. Women who received at least one dose of study drug were included in the safety analyses. This trial is registered with ClinicalTrials.gov, NCT03208179. FINDINGS: From March-29, 2018, to July 5, 2019, 4680 women (mean age 25·0 years [SD 6·0]) were enrolled and randomly assigned: 1561 (33%; mean age 24·9 years [SD 6·1]) to the sulfadoxine-pyrimethamine group, 1561 (33%; mean age 25·1 years [6·1]) to the dihydroartemisinin-piperaquine group, and 1558 (33%; mean age 24·9 years [6.0]) to the dihydroartemisinin-piperaquine plus azithromycin group. Compared with 335 (23·3%) of 1435 women in the sulfadoxine-pyrimethamine group, the primary composite endpoint of adverse pregnancy outcomes was reported more frequently in the dihydroartemisinin-piperaquine group (403 [27·9%] of 1442; risk ratio 1·20, 95% CI 1·06-1·36; p=0·0040) and in the dihydroartemisinin-piperaquine plus azithromycin group (396 [27·6%] of 1433; 1·16, 1·03-1·32; p=0·017). The incidence of serious adverse events was similar in mothers (sulfadoxine-pyrimethamine group 17·7 per 100 person-years, dihydroartemisinin-piperaquine group 14·8 per 100 person-years, and dihydroartemisinin-piperaquine plus azithromycin group 16·9 per 100 person-years) and infants (sulfadoxine-pyrimethamine group 49·2 per 100 person-years, dihydroartemisinin-piperaquine group 42·4 per 100 person-years, and dihydroartemisinin-piperaquine plus azithromycin group 47·8 per 100 person-years) across treatment groups. 12 (0·2%) of 6685 sulfadoxine-pyrimethamine, 19 (0·3%) of 7014 dihydroartemisinin-piperaquine, and 23 (0·3%) of 6849 dihydroartemisinin-piperaquine plus azithromycin treatment courses were vomited within 30 min. INTERPRETATION: Monthly IPTp with dihydroartemisinin-piperaquine did not improve pregnancy outcomes, and the addition of a single course of azithromycin did not enhance the effect of monthly IPTp with dihydroartemisinin-piperaquine. Trials that combine sulfadoxine-pyrimethamine and dihydroartemisinin-piperaquine for IPTp should be considered. FUNDING: European & Developing Countries Clinical Trials Partnership 2, supported by the EU, and the UK Joint-Global-Health-Trials-Scheme of the Foreign, Commonwealth and Development Office, Medical Research Council, Department of Health and Social Care, Wellcome, and the Bill-&-Melinda-Gates-Foundation.
Subject(s)
Antimalarials , Pregnancy Complications, Parasitic , Quinolines , Infant, Newborn , Pregnancy , Female , Humans , Adult , Young Adult , Pyrimethamine/adverse effects , Sulfadoxine/adverse effects , Pregnancy Outcome , Antimalarials/adverse effects , Azithromycin/adverse effects , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/epidemiology , Drug Combinations , Kenya , TanzaniaABSTRACT
Parasite resistance against anti-malarial drugs is a major threat to the ongoing malaria control and elimination strategies. This is especially true since resistance to the currently recommended artemisinins and partner drugs has been confirmed in South East Asia (SEA) and new anti-malarial compounds are not expected to be available in the near future. Spread from SEA or independent emergence of artemisinin resistance in sub-Saharan Africa (SSA) could reverse the achievements in malaria control that have been attained in the past two decades and derail the ongoing elimination strategies. The current surveillance of clinical efficacy and resistance to anti-malarial drugs is based on efficacy trials to assess the clinical performance of anti-malarials, in vivo/ex vivo assessment of parasite susceptibility to anti-malarials and prevalence of known molecular markers of drug resistance. Whereas clinical efficacy trials are restricted by cost and the complex logistics of patient follow-up, molecular detection of genetic mutations associated with resistance or reduced susceptibility to anti-malarials is by contrast a simple and powerful tool for early detection and monitoring of the prevalence of resistant parasites at population level. This provides needed information before clinical failure emerges, allowing policy makers to anticipate problems and respond. The various methods previously used in detection of molecular markers of drug resistance share some limitations: low-throughput, and high costs per sample and demanding infrastructure. However, recent technological advances including next-generation sequencing (NGS) methodologies promise greatly increased throughput and reduced costs, essentially providing unprecedented potential to address different research and operational questions of relevance for drug policy. This review assesses the potential role of NGS to provide comprehensive information that could guide drug policies in malaria endemic countries and looks at the foreseeable challenges facing the establishment of NGS approaches for routine surveillance of parasite resistance to anti-malarials in SSA.
Subject(s)
Antimalarials/therapeutic use , Communicable Disease Control/legislation & jurisprudence , Drug Resistance/genetics , High-Throughput Nucleotide Sequencing , Plasmodium falciparum/genetics , Policy Making , Africa South of the Sahara , Communicable Disease Control/methods , Drug Therapy, Combination , Global Health/legislation & jurisprudence , Global Health/standards , Legislation, Drug , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effectsABSTRACT
OBJECTIVES: Malaria and sexually transmitted and reproductive tract infections (STIs/RTIs) are highly prevalent in sub-Saharan Africa and associated with poor pregnancy outcomes. We investigated the individual and combined effects of malaria and curable STIs/RTIs on fetal growth in Kenya, Tanzania, and Malawi. METHODS: This study was nested within a randomized trial comparing monthly intermittent preventive treatment for malaria in pregnancy with sulfadoxine-pyrimethamine vs dihydroartemisinin-piperaquine, alone or combined with azithromycin. Fetal weight gain was assessed by serial prenatal ultrasound. Malaria was assessed monthly, and Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis, Chlamydia trachomatis, and bacterial vaginosis at enrollment and in the third trimester. The effect of malaria and STIs/RTIs on fetal weight/birthweight Z-scores was evaluated using mixed-effects linear regression. RESULTS: In total, 1435 pregnant women had fetal/birth weight assessed 3950 times. Compared to women without malaria or STIs/RTIs (n = 399), malaria-only (n = 267), STIs/RTIs only (n = 410) or both (n = 353) were associated with reduced fetal growth (adjusted mean difference in fetal/birth weight Z-score [95% confidence interval]: malaria = -0.18 [-0.31,-0.04], P = 0.01; STIs/RTIs = -0.14 [-0.26,-0.03], P = 0.01; both = -0.20 [-0.33,-0.07], P = 0.003). Paucigravidae experienced the greatest impact. CONCLUSION: Malaria and STIs/RTIs are associated with poor fetal growth especially among paucigravidae women with dual infections. Integrated antenatal interventions are needed to reduce the burden of both malaria and STIs/RTIs.
Subject(s)
Malaria , Reproductive Tract Infections , Sexually Transmitted Diseases , Female , Pregnancy , Humans , Birth Weight , Cohort Studies , Kenya/epidemiology , Fetal Weight , Malawi/epidemiology , Tanzania/epidemiology , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Pregnancy Outcome , Fetal DevelopmentABSTRACT
Molecular studies related to diagnosis and research rely on collection of blood samples and extraction of high-quality DNA. In Africa, where the populations carried 94% of the total burden of cases and deaths due to malaria in 2019, collection of samples is often challenged by remote study areas and lack of a cold chain to transport and store samples. Collection of blood on filter paper is a technique that is less invasive and has simpler requirements regarding training of staff, storage, and transport of samples than collection of venous blood samples. Dried blood spots (DBS) are therefore commonly used in many research projects. However, DNA quality can be affected by duration and conditions of storage. The quality of the DNA for molecular analyses also depends on a DNA extraction methodology that provides high-quality DNA with high purity and yield. Several protocols for DNA extraction have been described, and many comparative studies have analyzed and optimized the different methodologies to find an alternative to the more costly commercial extraction kits. This chapter describes recommendations for storage and preservation of DBS, and a Chelex-based protocol for extraction of DNA from DBS.
Subject(s)
Malaria, Falciparum , Parasites , Animals , DNA, Protozoan/genetics , Humans , Malaria, Falciparum/parasitology , Parasites/genetics , Plasmodium falciparum/genetics , Polymerase Chain Reaction/methods , Specimen Handling/methodsABSTRACT
Highly sensitive molecular techniques for the detection of low-level Plasmodium falciparum parasitemia are highly useful for various clinical and epidemiological studies. However, differences in how blood samples are preserved, the quantity of blood stored, as well as genomic DNA extraction methods used may compromise the potential usefulness of these methodologies. This study compared diagnostic sensitivity based on microscopy and malaria rapid diagnostic tests (mRDTs), with quantitative polymerase chain reaction (qPCR) P. falciparum positivity of dried blood spots (DBS) or whole blood pellets (WBP) from pregnant women using different DNA extraction protocols (Chelex-saponin or a commercial kit). Samples from 129 pregnant women were analyzed, of which 13 were P. falciparum positive by mRDT and 5 by microscopy. By using extraction kit on WBP and on DBS, qPCR positivity was 27 (20.9%) and 16 (12.4%), respectively, whereas Chelex extraction on DBS only resulted in 4 (3.1%) P. falciparum positive samples. Thus, extraction using commercial kits greatly improve the likelihood of detecting P. falciparum infections.
Subject(s)
Malaria, Falciparum , Malaria , DNA , Female , Humans , Malaria/diagnosis , Malaria, Falciparum/diagnosis , Plasmodium falciparum/genetics , Pregnancy , Pregnant Women , Sensitivity and SpecificityABSTRACT
Aerobic thermoacidophilic archaea belonging to the genus Sulfolobus harbor peroxiredoxins, thiol-dependent peroxidases that assist in protecting the cells from oxidative damage. Here, the crystal structure of the 1-Cys peroxiredoxin from Sulfolobus islandicus, named 1-Cys SiPrx, is presented. A 2.75â Å resolution data set was collected from a crystal belonging to space group P212121, with unit-cell parameters a = 86.8, b = 159.1, c = 189.3â Å, α = ß = γ = 90°. The structure was solved by molecular replacement using the homologous Aeropyrum pernix peroxiredoxin (ApPrx) structure as a search model. In the crystal structure, 1-Cys SiPrx assembles into a ring-shaped decamer composed of five homodimers. This quaternary structure corresponds to the oligomeric state of the protein in solution, as observed by size-exclusion chromatography. 1-Cys SiPrx harbors only a single cysteine, which is the peroxidatic cysteine, and lacks both of the cysteines that are highly conserved in the C-terminal arm domain in other archaeal Prx6-subfamily proteins such as ApPrx and that are involved in the association of dimers into higher-molecular-weight decamers and dodecamers. It is thus concluded that the Sulfolobus Prx6-subfamily protein undergoes decamerization independently of arm-domain cysteines.
Subject(s)
Cysteine/metabolism , Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Sulfolobus/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Cysteine/chemistry , Models, Molecular , Protein Conformation , Protein Multimerization , Sequence HomologyABSTRACT
INTRODUCTION: World Health Organization recommendations of bidirectional screening for tuberculosis (TB) and diabetes have been met with varying levels of uptake by national TB programs in resource-limited settings. METHODOLOGY: Kibong'oto Infectious Diseases Hospital (KIDH) is a referral hospital for TB from northern Tanzania, and the national referral hospital for multidrug-resistant (MDR)-TB. Glycated hemoglobin (HgbA1c) testing was done on patients admitted to KIDH for newly diagnosed TB, retreatment TB, and MDR-TB, to determine the point prevalence of diabetes (HgbA1c ≥ 6.5%) and prediabetes (HgbA1c 5.7%-6.4%). RESULTS: Of 148 patients hospitalized at KIDH over a single week, 59 (38%) had no prior TB treatment, 22 (15%) were retreatment cases, and 69 (47%) had MDR-TB. Only 3 (2%) had a known history of diabetes. A total of 144 (97%) had successful screening, of which 110 (77%) had an HgbA1c ≤ 5.6%, 28 (19%) had ≥ 5.7 < 6.5, and 6 (4%) had ≥ 6.5. Comparing subjects with prediabetes or diabetes to those with normal A1c levels, retreatment patients were significantly more likely to have a A1c ≥ 5.7% (odds ratio: 3.2, 95% CI: 1.2-9.0; p = 0.02) compared to those without prior TB treatment. No retreatment case was a known diabetic, thus the number needed to screen to diagnose one new case of diabetes among retreatment cases was 11. CONCLUSIONS: Diabetes prevalence by HgbA1c was less common than expected, but higher HgA1c values were significantly more frequent among retreatment cases, allowing for a rational, resource-conscious screening approach.
Subject(s)
Diabetes Mellitus/epidemiology , Glycated Hemoglobin/analysis , Tuberculosis/complications , Adult , Cross-Sectional Studies , Female , Humans , Male , Mass Screening , Middle Aged , Prevalence , Retreatment , Risk Assessment , Tanzania/epidemiology , Tuberculosis/drug therapyABSTRACT
Etiologic studies of diarrhea are limited by uneven diagnostic methods and frequent asymptomatic detection of enteropathogens. Polymerase chain reaction-based stool pathogen quantification may help distinguish clinically significant infections. We performed a nested case-control study of diarrhea in infants from a community-based birth cohort in Tanzania. We tested 71 diarrheal samples and pre-diarrheal matched controls with a laboratory-developed TaqMan Array Card for 19 enteropathogens. With qualitative detection, no pathogens were significantly associated with diarrhea. When pathogen quantity was considered, rotavirus (odds ratio [OR] = 2.70 per log10 increase, P < 0.001), astrovirus (OR = 1.49, P = 0.01), and Shigella/enteroinvasive Escherichia coli (OR = 1.47, P = 0.04) were associated with diarrhea. Enterotoxigenic E. coli (0.15 SD decline in length-for-age z score after 3 months per log10 increase, P < 0.001) and Campylobacter jejuni/C. coli (0.11 SD decline, P = 0.003) in pre-diarrheal stools were associated with poor linear growth. Quantitative analysis can help refine the association between enteropathogens and disease in endemic settings.
Subject(s)
Astroviridae Infections/virology , Feces/microbiology , Gastrointestinal Diseases/microbiology , Mamastrovirus/isolation & purification , Rotavirus/isolation & purification , Astroviridae Infections/epidemiology , Case-Control Studies , Endemic Diseases , Female , Gastrointestinal Diseases/epidemiology , Humans , Infant , Male , Odds Ratio , Risk Factors , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Tanzania/epidemiologyABSTRACT
BACKGROUND: Childhood diarrhoea can be caused by many pathogens that are difficult to assay in the laboratory. Molecular diagnostic techniques provide a uniform method to detect and quantify candidate enteropathogens. We aimed to develop and assess molecular tests for identification of enteropathogens and their association with disease. METHODS: We developed and assessed molecular diagnostic tests for 15 enteropathogens across three platforms-PCR-Luminex, multiplex real-time PCR, and TaqMan array card-at five laboratories worldwide. We judged the analytical and clinical performance of these molecular techniques against comparator methods (bacterial culture, ELISA, and PCR) using 867 diarrhoeal and 619 non-diarrhoeal stool specimens. We also measured molecular quantities of pathogens to predict the association with diarrhoea, by univariate logistic regression analysis. FINDINGS: The molecular tests showed very good analytical and clinical performance at all five laboratories. Comparator methods had limited sensitivity compared with the molecular techniques (20-85% depending on the target) but good specificity (median 97·3%, IQR 96·5-98·9; mean 95·2%, SD 9·1). Positive samples by comparator methods usually had higher molecular quantities of pathogens than did negative samples, across almost all platforms and for most pathogens (p<0·05). The odds ratio for diarrhoea at a given quantity (measured by quantification cycle, Cq) showed that for most pathogens associated with diarrhoea-including Campylobacter jejuni and Campylobacter coli, Cryptosporidium spp, enteropathogenic Escherichia coli, heat-stable enterotoxigenic E coli, rotavirus, Shigella spp and enteroinvasive E coli, and Vibrio cholerae-the strength of association with diarrhoea increased at higher pathogen loads. For example, Shigella spp at a Cq range of 15-20 had an odds ratio of 8·0 (p<0·0001), but at a Cq range of 25-30 the odds ratio fell to 1·7 (p=0·043). INTERPRETATION: Molecular diagnostic tests can be implemented successfully and with fidelity across laboratories around the world. In the case of diarrhoea, these techniques can detect pathogens with high sensitivity and ascribe diarrhoeal associations based on quantification, including in mixed infections, providing rich and unprecedented measurements of infectious causes. FUNDING: Bill & Melinda Gates Foundation Next Generation Molecular Diagnostics Project.