Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Microb Pathog ; 185: 106459, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995882

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , RNA, Circular/genetics , Biomarkers , RNA/genetics , Tuberculosis/diagnosis , Tuberculosis/genetics , Mycobacterium tuberculosis/genetics
2.
Mol Biol Rep ; 50(3): 2077-2083, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36542233

ABSTRACT

OBJECTIVE: One of the systemic infections is Brucellosis which is caused by facultative intracellular bacteria of the genus Brucella. Vitamin D is a fat-soluble prohormone, that metabolizes enzymes and its intracellular receptor creates the active hormone and also mediate in responses of immune system. METHODS: Current research consists of 102 patients with brucellosis who were selected based on culture, PCR results serology, and clinical symptoms. The control group composed of 102 healthy people. The polymorphism of genes (Bsm I, Fok I, Taq I, Apa I) encoding Vitamin D receptor (VDR) were assessed by the PCR-RFLP method. RESULTS: The results showed that ff, tt, aa, and bb genotypes in Fok I, ApaI, TaqI, and BsmI were significant in case/control groups (P-value ≤ 0.0001). The genotype frequency AA in the control group is higher than that of the study group, while genotype frequency aa in the study group is more than the control. The odds ratio for brucellosis in individuals with ff genotype is 37 times higher than that of Ff genotype. Also, the odds ratio of brucellosis in individuals with genotype tt, aa, and bb was 12, 53, and 6 times higher than those of the Aa, Bb, and Tt genotypes. CONCLUSION: The genotypes aa and ff in the positions of the ApaI and FokI are of higher importance. The brucellosis risk in individuals accompanied aa genotype at Apa I is 53 times higher than that of the genotype AA, in other words, AA and BB, TT and FF genotypes are protective against the disease.


Subject(s)
Brucellosis , Receptors, Calcitriol , Humans , Brucellosis/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Receptors, Calcitriol/genetics , Vitamin D
3.
Proteins ; 90(4): 936-946, 2022 04.
Article in English | MEDLINE | ID: mdl-34812523

ABSTRACT

In our previous study, we reported the design and recombinant production of the p28-apoptin as a novel chimeric protein for breast cancer (BC) treatment. This study aimed to evaluate the inhibitory activity of the chimeric protein against BC cells in vitro and in vivo. We developed a novel multifunctional protein, consisting of p28, as a tumor-homing killer peptide fused to apoptin as a tumor-selective killer. The chimeric protein showed significantly higher toxicity in BC cell lines dose-dependently than in non-cancerous control cell lines. IC50 values were 1.41, 1.38, 6.13, and 264.49 µM for 4T1, MDA-MB-468, Vero, and HEK293 cells, respectively. The protein showed significantly enhanced uptake in 4T1 cancer cells compared with non-cancerous Vero cells. We also showed that the p28-apoptin chimeric protein binds significantly higher to human breast cancer tumor sections than the normal human breast tissue section. Also, significant apoptosis induction and tumor growth inhibition were observed in established tumor-bearing mice accompanied by a decreased frequency of metastases. Our results support that the chimeric protein has inhibitory activity in vitro and in vivo, making it a promising choice in targeted cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Vero Cells
4.
Mol Biol Rep ; 49(2): 1321-1327, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797493

ABSTRACT

BACKGROUND: Recently exposure to ionizing radiation driven by artificial radiation sources such as Medical X-rays and Nuclear medicine has increased hastily. Ionizing radiation-induced the DNA damage and activate the DNA damage response signaling pathways. The aim of this study was to evaluate the role of miR-21 and miR-625 in response to low-dose ionizing radiation. MATERIALS AND METHODS: In this study, the blood sample of 38 volunteer patients who underwent Cardiac scans before and after 99mTc-MIBI injection were used. The WBC of patients was used for RNA extraction and after cDNA synthesis by the poly-A method the expression level of miR-21 and miR-625 was evaluated by real-time PCR method. RESULTS: The results of this study indicated that miR-21 and miR- 625 were significantly upregulated under exposure to low-dose ionizing radiation. The expression level of these miRNAs was not significantly correlated with the age and BMI of patients. More ever the bioinformatics analysis indicated that SP1 was a common target of both miRNAs and had the highest degree between hub genes. CONCLUSION: In summary miR-21 and miR-625 can contribute to the response to acute low dose ionizing radiation by targeting the SP1. However further studies should be carried out on the molecular mechanism of effects of miR-21 and miR-625 in response to low dose ionizing radiation by targeting the SP1.


Subject(s)
DNA Damage/radiation effects , Gene Expression/radiation effects , MicroRNAs/radiation effects , Computational Biology , Dose-Response Relationship, Radiation , Female , Humans , Male , MicroRNAs/genetics , Middle Aged , Radiation, Ionizing , Signal Transduction , Up-Regulation
5.
Mol Biol Rep ; 49(3): 1995-2002, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34981334

ABSTRACT

BACKGROUND: Brucellosis is a major zoonosis all over the world. MicroRNAs are significant gene expression regulators and could be involved during the infections and also genetic alterations in the miRNAs sequence can affect primary miRNAs and precursor miRNAs processing and thus alter miRNAs expression. Current research studied the impact of the miR-146a polymorphism on miR-146a, TRAF-6, and IRAK-1 genes expression in patients with brucellosis illness. METHODS AND RESULTS: In this research, 25 patients with brucellosis and 25 healthy participants with determined genotypes for miR-SNP rs2910164 and miR-SNP rs57095329 were recruited. IRAK-1, TRAF-6, and miR-146a expressions in peripheral blood mononuclear cells (PBMCs) were specified by quantitative real- time PCR (qRT-PCR). Moreover, interleukin-1ß (IL-1ß) and tumor necrosis factor- alpha (TNF-α) serum levels were assessed by a sandwich enzyme-linked immunosorbent assay (ELISA) technique. There was no significant difference in the expression level of miR-146a, IRAK-1, and TRAF-6, among the patients with brucellosis and control group. TRAF-6 PBMCs expression levels in the distinctive genotypes of rs2910164 were significantly observed in patients (P = 0.048). No significant distinctions were found in miR-146a, IRAK-1, and TRAF-6 expression levels and among the rs57095329 different genotypes in brucellosis patients and controls. Meanwhile, no significant relationship was found between the rs2910164 and rs57095329 genotypes and the serum level of cytokines mentioned between the two groups. We did not find any association between expression of TRAF-6, miR-146a, and IRAK-1 in PBMCs, and cytokines serum levels with two single nucleotide polymorphisms (SNPs) in miR-146a. CONCLUSIONS: To the best of writers' knowledge, this research is the first one evaluating the probable link between the miR-146a rs2910164 and rs57095329 variant with miRNAs, relevant cytokine levels, and target genes in brucellosis.


Subject(s)
Brucellosis , Interleukin-1 Receptor-Associated Kinases , Intracellular Signaling Peptides and Proteins , MicroRNAs , Animals , Brucellosis/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide/genetics , Zoonoses
6.
Lasers Med Sci ; 37(1): 449-459, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33740139

ABSTRACT

Photobiomodulation (PBM) is an acceptable method of stimulating stem cells through its non-invasive absorption by the cell photoreceptors and the induction of cellular response. The current research was aimed at evaluating the effect of near-infrared PBM on proliferation and osteogenic differentiation in inflamed periodontal ligament stem cells (I-PDLSCs). I-PDLSCs were isolated and characterized. Third passage cells were irradiated with 940-nm laser at an output power of 100 mW in a continuous wave. A fluence of 4 J/cm2 in three sessions at 48-h intervals was applied and compared with non-irradiated controls. Cell viability and proliferation were evaluated by MTT assay. Alkaline phosphatase activity, quantitative Alizarin red staining test, and q-RT-PCR were used to evaluate the osteogenic properties of the I-PDLSCs in four groups of (a) osteogenic differentiation medium + laser (ODM + L), (b) osteogenic differentiation medium without laser (ODM), (c) non-osteogenic differentiation medium + laser (L), and (d) non-osteogenic differentiation medium (control). There was a non-significant increase in the viability of cells at 48- and 72-h post last laser irradiation. Alizarin red staining revealed no significant stimulatory effect of PBM at 14 and 21 days. However, alkaline phosphatase activity was significantly higher in the L + ODM group. Expression of osteogenic-related genes had a statistically significant increase at 21-day post irradiation. The irradiation used in the present study showed no significant increase in the proliferation of I-PDLSCs by PBM. However, expression levels of osteogenic-related genes and alkaline phosphatase activity were significantly increased in irradiated groups.


Subject(s)
Osteogenesis , Periodontal Ligament , Alkaline Phosphatase , Cell Differentiation , Cell Proliferation , Cells, Cultured , Lasers, Semiconductor/therapeutic use , Stem Cells
7.
Nutr Cancer ; 73(8): 1389-1399, 2021.
Article in English | MEDLINE | ID: mdl-32748663

ABSTRACT

PURPOSE: Silibinin is the most active flavonolignan constituent of Silymarin, the extract of milk thistle seeds. In this study, we investigated the anticancer properties and molecular mechanisms of silibinin on colorectal cancer (CRC) cells. METHODS: HCT-116 cells were used to investigate the effects of silibinin on proliferation, migration, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), apoptosis and signaling pathways underlying these functions by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), Western blot, Acridine orange/propidium iodide double staining, migration and sphere formation assay. RESULTS: Silibinin significantly suppressed HCT-116 cells proliferation and migration and induced the apoptosis via increasing the Bax/Bcl-2 ratio. Silibinin down-regulated cancer stemness markers; prominin-1 (CD133), CD44, BMI1, Aldehyde dehydrogenase 1 (ALDH1), and doublecortin-like kinase 1 (DCLK1) of HCT-116 cell line. Silibinin attenuated EMT through decreased expression of N- cadherin and vimentin and increased expression of (E-cadherin). Furthermore, silibinin decreased the ß-catenin gene and protein expression. CONCLUSION: Our study revealed that silibinin maintains various antitumor activities such as induction of apoptosis, suppression of migration, elimination of CSCs and attenuation of EMT related markers in CRC cells. These underlying anti-tumor mechanisms of silibinin are likely to act through the blockage of the ß-catenin signaling pathway, which is the key component of Wnt signaling pathway, one of the hallmarks of CRC development.


Subject(s)
Colorectal Neoplasms , beta Catenin , Cadherins/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Doublecortin-Like Kinases , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Silybin , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
8.
BMC Infect Dis ; 21(1): 1070, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34656082

ABSTRACT

BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most common types of DNA changes in the human genome that leading to phenotypic differences in humans. MicroRNAs (miRNAs) are usually affected by various bacterial infections, and they are involved in controlling the immune responses. MicroRNA-146a (miR-146a) plays an essential role in the development of infectious and inflammatory diseases. The aim of the present study was to investigate the association between risk of brucellosis and genetic variations in miR-146a. METHODS: This case-control study was conducted on 108 Brucellosis patients and 108 healthy controls. We genotyped two SNPs (rs2910164 and rs57095329) of the miR-146a using tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) and restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) methods. RESULTS: The rs2910164 SNP was significantly associated with brucellosis in co-dominant [OR = 4.27, 95% CI = (2.35-7.79, P = 0.001] and dominant [OR = 3.52, 95% CI = (1.97-6.30, P = 0.001] models. Co-dominant (P = 0.047) and recessive (P = 0.018) models were significant at position rs57095329 between the two groups of patient and healthy. The A C haplotype (rs2910164 and rs57095329) was associated with brucellosis in the assessed population [OR (95% CI) = 1.98 (1.22-3.20), P = 0.0059]. CONCLUSIONS: Consequently, our study demonstrated significant differences in genotype and haplotype frequencies of miR-146a variants between brucellosis patients and controls. Further studies on the larger sample sizes are required to verify the observed associations.


Subject(s)
Brucellosis , MicroRNAs , Brucellosis/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , MicroRNAs/genetics , Polymorphism, Single Nucleotide
9.
Mol Biol Rep ; 48(5): 4757-4765, 2021 May.
Article in English | MEDLINE | ID: mdl-34028654

ABSTRACT

Recently, special attention has been paid to marine origin compounds such as carbohydrates, peptides, lipids, and carotenoids, which are extracted from microalgae and have anticancer, anti-inflammatory, antimicrobial (e.g., anti-COVID-19 activity), and antioxidant properties in biomedicine and pharmaceutical biotechnology. In addition, these photosynthetic marine microorganisms have several applications in biotechnology and are suitable hosts for the production of recombinant proteins/peptides, such as monoclonal antibodies and vaccines. Silica-based nanoparticles obtained from diatoms (a microalgae group) are used as drug delivery carriers owing to their biodegradability, easy functionalization, low cost, and simple features compared to synthetics, which make these agents proper alternatives for synthetic silica nanoparticles. Therefore, diatom-based nanoparticles are a viable option for the delivery of anti-cancer drugs and reducing the side-effects of cancer chemotherapy.


Subject(s)
Biological Factors/pharmacology , Microalgae/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Factors/chemistry , Drug Carriers , Nanoparticles , Photosynthesis
10.
Mol Biol Rep ; 48(1): 203-218, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33398678

ABSTRACT

Cross-talk among inflammation and colorectal cancer cells is chiefly reported through a complex of cytokines, chemokines, and growth factors. MicroRNA performs strategic roles in controlling a variety of signaling cascades. miR-34a is known as a master regulator of tumor suppression. Combined application of different miRNA-based agents and chemotherapeutic drugs has been used to augment drug sensitivity and may reinforce the antitumor effect. A lot of studies specify a substantial increase in the effectiveness of combination therapies. The anti-inflammatory activity of Zerumbone (ZER) was investigated in many cancers. In this study the level of the inflammatory cytokines including CXCL-12 (SDF-1), CCL-2 (MCP-1), TGF-ß and IL-33 has been measured in pmiR-34a-5p transfected and pmiR-34a-5p +ZER treated CRC cell lines (HCT-116 and SW48) by QRT-PCR and ELISA methods, respectively. The results showed that miR-34a could significantly inhibit cytokine expression in both cell lines for 48 and 72 h except SDF-1 which no inhibition was observed in SW48 cells. ZER suppressed SDF-1 for all three time points in both cell lines, while in SW48 cells IL-33 and TGF-ß were inhibited in 72 h and in HCT-116 cells MCP-1 diminished for only 24 h and TGF-ß diminished for all three times. Combination of both miR-34a and ZER suppressed TGF-ß, SDF-1 and MCP-1 in HCT-116 cells in all time points while in SW48 cells, suppression of most cytokines was observed in 48 and 72 h. Furthermore Colony formation assay and scratch test were employed to detect changes of proliferation and migration in CRC transfected and treated cells. Generally, we found that miR-34a could considerably decrease the expression of inflammatory cytokines and the combination of ZER+ miR-34 boosted this effect. Moreover the migration and proliferation decreased in treated and transfected cells and this reduction was more severe in miR-34a +ZER treatment. It is important to note that in the case of cell resistance to each of these therapeutic agents, inhibition of cytokines can be compensated by another one.


Subject(s)
Chemokine CCL2/genetics , Chemokine CXCL12/genetics , Colorectal Neoplasms/drug therapy , MicroRNAs/genetics , Sesquiterpenes/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/pathology , Interleukin-33/genetics , Transforming Growth Factor beta/genetics
11.
Biotechnol Appl Biochem ; 68(2): 279-287, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32275078

ABSTRACT

Sphingosine kinases type 1 (SphK1) is a key enzyme in the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). Different abnormalities in SphK1 functions may correspond with poor prognosis in various cancers. Additionally, upregulated SphK1/S1P could promote cancer cell proliferation, angiogenesis, mobility, invasion, and metastasis. MicroRNAs as conserved small noncoding RNAs play major roles in cancer initiation, progression, metastasis, etc. Their posttranscriptionally mechanisms could affect the development of cancer growth or tumorigenesis suppression. The growing number of studies has described that various microRNAs can be regulated by SphK1, and its expression level can also be regulated by microRNAs. In this review, the relationship of SphK1 and microRNA functions and their interaction in human malignancies have been discussed. Based on them novel treatment strategies can be introduced.


Subject(s)
Lysophospholipids/metabolism , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA, Neoplasm/metabolism , Sphingosine/analogs & derivatives , Humans , Neoplasms/blood supply , Neoplasms/pathology , Sphingosine/metabolism
12.
Mol Divers ; 25(2): 949-965, 2021 May.
Article in English | MEDLINE | ID: mdl-32297121

ABSTRACT

In cancer disease, which is one of the problems of today's human societies, the expression of some tyrosine kinase receptors that are effective in the growth and proliferation of cancerous cells rises. Therefore, it is essential to develop and propose new drugs to target the receptors. Performing modeling calculations such as QSAR and docking makes the drug discovery process more efficient. Thus, backpropagation artificial neural network was used for multidimensional quantitative structure-activity relationship (QSAR) to identify essential features of pyrazolopyrimidine moiety, responsible for anticancer activity. The statistical parameters of the model show that multi-QSAR has sufficient validity and accuracy. According to the QSAR modeling, among 26 compounds, the interaction of eight candidates with EGFR, FGFR4, PDGFRA, and VEGFR2 was analyzed by docking modeling. The results showed that 1u compound binds to proteins in a more appropriate area (except FGFR4) with acceptable energy. The results of docking for VEGFR2 binding showed that 1u binds to the active site and binding site of receptor, and it was in the interaction with ten residues in the sites. Although the binding site of 1u molecule in the FGFR4 was not suitable, the binding free energy was excellent (- 9.22 kcal mol-1), which was less than those two anticancer drugs of gefitinib and regorafenib. Furthermore, the values of binding free energy were - 8.69, - 9.64, and - 9.19 kcal mol-1 for EGFR, PDGFRA, and VEGFR2, respectively. Therefore, this study introduces 1u as an anticancer agent that can inhibit the tyrosine kinase receptors.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Receptor Protein-Tyrosine Kinases/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites , Drug Discovery , Molecular Docking Simulation , Neural Networks, Computer , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Quantitative Structure-Activity Relationship
13.
BMC Nephrol ; 22(1): 228, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34144690

ABSTRACT

BACKGROUND: Silver nanoparticles (AgNPs) can accumulate in various organs after oral exposure. The main objective of the current study is to evaluate the renal toxicity induced by AgNPs after repeated oral exposure and to determine the relevant molecular mechanisms. METHODS: In this study, 40 male Wistar rats were treated with solutions containing 30, 125, 300, and 700 mg/kg of AgNPs. After 28 days of exposure, histopathological changes were assessed using hematoxylin-eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining. Apoptosis was quantified by TUNEL and immunohistochemistry of caspase-3, and the level of expression of the mRNAs of growth factors was determined using RT-PCR. RESULTS: Histopathologic examination revealed degenerative changes in the glomeruli, loss of tubular architecture, loss of brush border, and interrupted tubular basal laminae. These changes were more noticeable in groups treated with 30 and 125 mg/kg. The collagen intensity increased in the group treated with 30 mg/kg in both the cortex and the medulla. Apoptosis was much more evident in middle-dose groups (i.e., 125 and 300 mg/kg). The results of RT-PCR indicated that Bcl-2 and Bax mRNAs upregulated in the treated groups (p < 0.05). Moreover, the data related to EGF, TNF-α, and TGF-ß1 revealed that AgNPs induced significant changes in gene expression in the groups treated with 30 and 700 mg/kg compared to the control group. CONCLUSION: Our observations showed that AgNPs played a critical role in in vivo renal toxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Metal Nanoparticles/toxicity , Animals , Apoptosis/genetics , Blood Urea Nitrogen , Body Weight/drug effects , Caspase 3/metabolism , Chemical and Drug Induced Liver Injury/pathology , Creatinine/blood , Epidermal Growth Factor/genetics , Extracellular Matrix Proteins/genetics , Gene Expression , Immunohistochemistry , In Situ Nick-End Labeling , Kidney/drug effects , Kidney/pathology , Male , Organ Size/drug effects , RNA, Messenger/genetics , Rats, Wistar , Transforming Growth Factor beta/genetics , Tumor Necrosis Factor-alpha/genetics
14.
Luminescence ; 36(1): 117-128, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32725773

ABSTRACT

Sorafenib tosylate (SORt) is an oral multikinase inhibitor used for treatment of advanced renal cell, liver, and thyroid cancers. In this study, this drug was synthesized and its antiproliferative activities against HCT116 and CT26 cells were assessed. The interaction of SORt with ß-lactoglobulin (BLG) was studied using different fluorescence techniques, circular dichroism (CD), zeta potential measurements, and docking simulation. The results of infrared (IR), mass, H NMR, and C NMR spectra demonstrated that the drug was produced with high quality, purity, and efficiency. SORt showed potent cytotoxicity against HCT116 and CT26 cells with IC50 of 8.12 and 5.42 µM, respectively. For BLG binding of SORt, the results showed that static quenching was the cause of the high affinity drug-protein interaction. Three-dimensional fluorescence and synchronous spectra indicated that SORt conformation was changed at different levels. CD suggested that the α-helix content remained almost constant in the BLG-SORt complex, whereas random coil content decreased. Zeta potential values of BLG were more positive after binding with SORt, due to electrostatic interactions between BLG and SORt. Thermodynamic parameters confirmed van der Waals and hydrogen bond interactions in the complex formation. Molecular modelling predicted the presence of hydrogen bonds and electrostatic forces in the BLG-SORt system, which was consistent with the experimental results.


Subject(s)
Antineoplastic Agents , Lactoglobulins , Antineoplastic Agents/pharmacology , Binding Sites , Circular Dichroism , Molecular Docking Simulation , Protein Binding , Sorafenib/pharmacology , Spectrometry, Fluorescence , Thermodynamics
15.
Acta Virol ; 65(3): 288-302, 2021.
Article in English | MEDLINE | ID: mdl-34565157

ABSTRACT

A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), enters into the host cells through an interaction between its surface spike protein (S-protein) and the angiotensin-converting enzyme 2 receptors, leading to coronavirus disease 2019 (COVID-19). Using effective S-protein inhibitors may reduce the virulence of the virus. Molecular docking was performed to evaluate the binding affinity of 97 phenolic compounds (phenolics) with the SARS-CoV-2 S-protein receptor-binding domain (RBD). Molecular dynamics (MD) simulation was carried out to assess the stability of interactions between top-ranked compounds and S-protein RBD. Pharmacokinetics and toxicity of top-ranked inhibitors were also studied. Furthermore, the essential residues involved in ligand binding, based on the degree of each amino acid in the ligand-amino acid interaction (LAI) network for S-protein, were identified. Molecular docking and MD simulations were performed utilizing the AutoDock and Discovery Studio Client version, respectively. The LAI network was analyzed using the Cytoscape software. Pharmacokinetics and toxicity of top-ranked compounds were studied using bioinformatics webservers. It was estimated that nine of the studied phenolics can bind to the SARS-CoV-2 S-protein at the nanomolar scale with a considerable estimated energy of binding (∆G binding Keywords: COVID-19; drug; molecular docking; molecular dynamics; SARS-CoV-2; spike protein.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antiviral Agents , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
16.
J Cell Biochem ; 121(2): 1362-1373, 2020 02.
Article in English | MEDLINE | ID: mdl-31595570

ABSTRACT

Poor prognosis and low survival are commonly seen in patients with glioblastoma multiforme (GBM). Due to the specific nature of solid tumors such as GBM, delivery of therapeutic agents to the tumor sites is difficult. So, one of the major challenges in the treatment of these tumors is a selection of appropriate method for drug delivery. Mesenchymal stem cells (MSCs) have a unique characteristic in migration toward the tumor tissue. In this regard, the present study examined the antitumor effects of manipulating human placenta-derived mesenchymal stem cells (PDMSCs) with NK4 expression (PDMSC-NK4) on GBM cells. After separation and characterization of PDMSCs, these cells were transduced with NK4 which was known as the antagonist of hepatocyte growth factor (HGF). The results indicated that engineered PDMSCs preferably migrate into GBM cells by transwell coculture system. In addition, the proliferation of the GBM cells significantly reduced after coculture with these cells. In fact, manipulated PDMSCs inhibited growth of tumor cells by induction of apoptosis. Our findings suggested that besides having antitumor effects, PDMSCs can also be applied as an ideal cellular vehicle to target the glioblastoma multiforme.


Subject(s)
Gene Expression Regulation , Glioblastoma/metabolism , Interleukins/biosynthesis , Mesenchymal Stem Cells/metabolism , Placenta/metabolism , Cell Line, Tumor , Coculture Techniques , Female , Glioblastoma/pathology , Humans , Mesenchymal Stem Cells/pathology , Placenta/pathology , Pregnancy
17.
Microb Pathog ; 142: 104052, 2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32045645

ABSTRACT

Human colorectal cancer is the third most common cancer around the world. Colorectal cancer has various risk factors, but current works have bolded a significant activity for the microbiota of the human colon in the development of this disease. Bacterial biofilm has been mediated to non-malignant pathologies like inflammatory bowel disease but has not been fully documented in the setting of colorectal cancer. The investigation has currently found that bacterial biofilm is mediated to colon cancer in the human and linked to the location of human cancer, with almost all right-sided adenomas of colon cancers possessing bacterial biofilm, whilst left-sided cancer is rarely biofilm positive. The profound comprehension of the changes in colorectal cancer can provide interesting novel concepts for anticancer treatments. In this review, we will summarize and examine the new knowledge about the links between colorectal cancer and bacterial biofilm.

18.
Bioorg Med Chem ; 28(1): 115152, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31771799

ABSTRACT

PURPOSE: The aim of this study was evaluating the cytotoxic and radiosensitizing effects of Ursolic Acid (UA) and Kamolonol Acetate (KA) on HCT116 cell line and finally investigating the functional role of NF-κB and CCND1 genes in the radiosensitizing activity of UA and KA. MATERIALS AND METHOD: The cytotoxic effects of UA and KA by MTT assay was evaluated on HCT-116. Clonogenic assay was performed to investigate of radiosensitizing effects of UA and KA on HCT116. To assessment the expression levels of NF-κB and CCND1 genes, real-time PCR method was used. RESULTS: The results of MTT assay revealed that UA and KA have cytotoxic effects on HCT116 cell line. According to clonogenic assay, survival fraction of treated cells with UA and KA has been decreased compared to the survival fraction of untreated cells. UA and KA lead to the decrease in the expression level of NF-κB. Synergistic effect of radiosensitizing agents with radiation was only approved for UA and 2 Gy of radiation. CONCLUSION: Based on our study, UA and KA have cytotoxic effects on HCT116 cell line. Furthermore, UA may lead to radiosensitization of human colorectal tumor cells by NF-κB1 and CCND1signaling pathways.


Subject(s)
Acetates/pharmacology , Coumarins/pharmacology , Cyclin D1/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Sesquiterpenes/pharmacology , Triterpenes/pharmacology , Cell Survival/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , Dose-Response Relationship, Drug , HCT116 Cells , Humans , Molecular Structure , NF-kappa B/genetics , NF-kappa B/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured , Ursolic Acid
19.
Mol Biol Rep ; 47(11): 8831-8840, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33141288

ABSTRACT

The Artemisia absinthium (AA), belongs to the Asteraceae family, is used as a therapeutic agent in traditional medicine in Iran. It is a rich source of biology-active compounds. However, the molecular mechanism of AA contributing to cell proliferation and apoptosis is still unknown. This study aims to assess the anticancer activity of the methanolic extract of A. absinthium (MEAA) against human colorectal cancer HCT-116 cell line. The cytotoxic effects of MEAA on HCT-116 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The expression levels of BAX and BCL-2 in HCT-116 cell line were examined by qRT-PCR. Annexin V/PI-flow cytometry technique was used to detect the cell cycle and apoptosis. MMP was predicted by Rhodamine 123 staining, and caspase 3 activity was analyzed by ELISA. Western blot method was performed to detect the expression level of BAX, Bcl-2 and Caspase-3 proteins. The MTT test revealed MEAA reduced the viability of HCT-116 cells. The mRNA and protein levels of BAX increased, but those of BCL-2 decreased in MEAA-treated cells. MEAA also prompted cell cycle arrest and induced apoptosis. After adding MEAA, the protein level and activity of caspase 3 and MMP destruction significantly increased. MEAA predominantly prompted apoptosis in HCT-116 cells by activating the mitochondrial pathway.


Subject(s)
Apoptosis/drug effects , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Artemisia absinthium/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Methanol/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Vero Cells , bcl-2-Associated X Protein/genetics
20.
Iran J Med Sci ; 45(1): 50-58, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32038059

ABSTRACT

BACKGROUND: Usually, chemoradiotherapy can be used for the treatment of locally advanced colorectal cancer (CRC) before surgery. On the other hand, some studies have shown that fractional radiation of tumor cells leads to chemoresistance. The aim of this study was to evaluate the chemoresistance of radioresistant sub-line (RR sub-line). METHODS: This study was done in Hamadan University of Medical Sciences in 2017-2018. MTT assay and sub-G1 fraction analysis by flow cytometry were used to evaluate cross-resistance of RR sub-line to gefitinib and regorafenib. Real-time PCR was used to investigate the role of four miRNAs and their target genes in the cross-resistance of RR sub-line. The t test and repeated measures test were used for the assessment of statistical significance between groups. RESULTS: The IC50 of gefitinib and regorafenib for RR sub-line were significantly higher than those of the parental cell line. On the other hand, the resistance index of RR sub-line for gefitinib and regorafenib were 1.92 and 1.44, respectively. The sub-G1 fraction of RR sub-line following treatment with gefitinib and regorafenib was significantly lower than that of the parental cell line (P=0.012 and P=0.038, respectively). The expression of miR-9, Let-7e, and Let-7b in RRsub-line was significantly lower than that of the parental cell line. However, NRAS, IGF1R, NFKB1, and CCND1 found to be upregulated in RR sub-line in comparison with the parental cell line. CONCLUSION: We can conclude that the acquired RR sub-line was cross-resistance to gefitinib and regorafenib. Furthermore, miR-9/NFKB1, let-7b/CCND1, let-7e/NRAS, and IGF1R played essential roles in the chemoradioresistance of CRC.

SELECTION OF CITATIONS
SEARCH DETAIL