ABSTRACT
Ovarian cancer is one of the leading causes of deaths among women. Despite advances in the treatment regimes, a high rate of diagnosis in the advanced stage makes it almost an incurable malignancy. Thus, more research efforts are required to identify potential molecular markers for early detection of the disease and therapeutic targets to augment the survival rate of ovarian cancer patients. Previously, in this context, we identified dysregulated expression of multimerin 1 (MMRN1) in ovarian cancer. To elucidate the relationship between MMRN1 expression and ovarian cancer progression, siRNA-based MMRN1 knockdown was employed and various cell assays were performed to study its effect on ovarian cancer cells. In addition, network of dysregulated proteins was identified by quantitative proteomics and associated pathways were explored by bioinformatics analysis. MMRN1 silencing showed a significant reduction in cell viability, adhesion, migration, and invasion and a high frequency of cell apoptosis. Label-free quantitative proteomics and in-depth statistical analysis identified 448 dysregulated proteins, majority of which were overexpressed in MMRN1 knockdown cells. The pathways overrepresented in ovarian cancer were DNA replication, mismatch repair, nucleotide excision repair, and cell cycle regulation. Conclusively, the findings of this study suggest that MMRN1 aids in the progression of ovarian cancer via modulation of DNA damage response and repair pathways.
Subject(s)
Blood Proteins , Ovarian Neoplasms , Humans , Female , Blood Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Damage , Cell Line, Tumor , DNA RepairABSTRACT
The asymptomatic nature, high rate of disease recurrence, and resistance to platinum-based chemotherapy highlight the need to identify and characterize novel target molecules for ovarian cancer. Fibroblast growth factor 8 (FGF8) aids in the development and metastasis of ovarian cancer; however, its definite role is not clear. We employed ELISA and IHC to examine the expression of FGF8 in the saliva and tissue samples of epithelial ovarian cancer (EOC) patients and controls. Furthermore, various cell assays were conducted to determine how FGF8 silencing influences ovarian cancer cell survival, adhesion, migration, and invasion to learn more about the functions of FGF8. In saliva samples, from controls through low-grade to high-grade EOC, a stepped overexpression of FGF8 was observed. Similar expression trends were seen in tissue samples, both at protein and mRNA levels. FGF8 gene silencing in SKOV3 cells adversely affected various cell properties essential for cancer cell survival and metastasis. A substantial reduction was observed in the cell survival, cell adhesion to the extracellular matrix, migration, and adhesion properties of SKOV3 cells, suggesting that FGF8 plays a crucial role in the development of EOC. Conclusively, this study suggests a pro-metastatic function of FGF8 in EOC.
Subject(s)
Neoplasm Recurrence, Local , Ovarian Neoplasms , Humans , Female , Fibroblast Growth Factor 8/genetics , Fibroblast Growth Factor 8/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Cell ProliferationABSTRACT
Ovarian cancer, the most lethal gynecological cancer, is the fifth most common cause of cancer-related deaths in women. A cost-effective and non-invasive early screening method for ovarian cancer is required to reduce the high mortality rate. Saliva is a clinically informative unique fluid, which is useful for novel approaches to prognosis, clinical diagnosis, and monitoring for non-invasive detection of disease. Multimerin1 (MMRN1) is a di-sulfide linked homo-polymeric glycoprotein from EMILIN family. Altered expression of MMRN1 has been reported in hepatocellular carcinoma, cervical cancer, and ovarian cancer. But, its role in epithelial ovarian cancer (EOC) is not clear and well documented. In this study, expression of Multimerin 1 was validated in saliva and tissues of EOC patients and age-matched controls by western blotting, ELISA, RT-PCR, and immunohistochemistry. Significant over expression of MMRN1 was observed by western blot and ELISA in saliva samples of EOC patients. The average concentration of MMRN1 in the saliva of healthy controls was 28.7 pg/ml (SE ± 1.76), 42.53 pg/ml (SE ± 4.06) in low grade and 52.91 pg/ml (SE ± 4.24) with p < 0.01 in high-grade EOC. Upregulated cytoplasmic expression of MMRN1 was observed in EOC tissue by immunohistochemistry. Our results suggest that MMRN1 expression is associated with EOC progression and MMRN1 may be potential biomarker candidates for early-stage EOC detection however further experiments are required in a large cohort to establish this proposition. Also, saliva can be explored as a novel medium for ovarian cancer diagnosis.