Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Langmuir ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347654

ABSTRACT

Vesicles are known to spontaneously adsorb onto solid-liquid interfaces and to form supported bilayers in aqueous solution. Cationic surfactants have typically been used to generate supported bilayers because solid surfaces in water are often negatively charged. The present study investigated the aggregation behavior of an anionic surfactant, hydroxy alkane sulfonate having a C18 alkyl chain (C18HAS) in aqueous CaCl2 solutions. These assessments were performed by acquiring data related to equilibrium surface tension, the solubilization of an oil-soluble dye, UV-visible transmittance, pyrene fluorescence and dynamic light scattering together with freeze-fracture transmission electron microscopy observations. The results suggest that C18HAS can form vesicles in aqueous CaCl2 solutions under certain surfactant concentrations. Specifically, this aggregation behavior is greatly affected by C18HAS/CaCl2 molar ratio. At the C18HAS/CaCl2 molar ratio is less than an equivalence point (that is, less than 2:1), phase separation occurs with the formation of a vesicle above solubility limit of the C18HAS Ca salt. On the other hand, in the case that the C18HAS/CaCl2 molar ratio is above an equivalence point (that is, above 2:1), the Na salt of C18HAS forms micelles above the critical micelle concentration (cmc), causing solubilization of vesicles. Analyses by high-speed atomic force microscopy demonstrated that the C18HAS vesicles can spontaneously form a supported bilayer on a negatively charged mica surfaces, similar to the behavior of cationic surfactant vesicles, even though C18HAS is an anionic surfactant. These results suggest that C18HAS could serve as a detergent component but also as a surface modifier when the C18HAS/CaCl2 molar ratio is optimized.

2.
Langmuir ; 29(47): 14411-20, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24156383

ABSTRACT

The monolayer structures and conformational ordering of cationic surfactants including the biodegradable quaternary ammonium molecules have been systematically characterized by π-A isotherm, surface potential, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and sum frequency generation (SFG) vibrational spectroscopy. It was found that the monolayer of the typical dialkyl dimethylammonium on the water surface was less densely packed along with many conformational gauche defects. The packing density and ordering of these monolayers were improved as halide ions were added to the subphase. A similar condensation effect was also observed when amide or ester groups are present in the alkyl tails of the surfactant. These results are discussed on the basis of the repulsive electrostatic interactions between the terminal ammonium moieties, the hydrogen bonding between the functional groups in the alkyl chains, as well as the flexibility of the alkyl chains in these surfactants. The present study is crucial to understanding the relationship between the interfacial structures and the functionalities of the biodegradable quaternary ammonium surfactants.


Subject(s)
Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Hydrogen Bonding , Molecular Structure , Quaternary Ammonium Compounds/metabolism , Static Electricity , Surface Properties , Surface-Active Agents/metabolism
3.
RSC Adv ; 11(32): 19836-19843, 2021 May 27.
Article in English | MEDLINE | ID: mdl-35479199

ABSTRACT

Although sodium internal olefin sulfonates (IOSs) derived from petrochemicals are known to act as anionic surfactants, these compounds have few practical applications and their interfacial properties have not been examined in detail because they have complex compositions and are challenging to prepare. However, IOSs obtained from vegetable oils have recently been applied to detergents. The present work represents the first study of the IOS sodium 5-hydroxyhexadecane-4-sulfonate (C16-4S-5OH) as a pure substance. The properties of C16-4S-5OH in aqueous solution were assessed by differential scanning calorimetry, equilibrium surface tension measurements, Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. This compound was found to have a low Krafft point and a low CMC, both of which are necessary for a modern sustainable surfactant. Although these two characteristics are normally difficult to achieve simultaneously, this work demonstrated that C16-4S-5OH in aqueous solution has a highly fixed stereostructure that enables both properties to be achieved. The C16 main carbon chain of this compound acts as a C12 and a C4 chain both oriented in the same direction, while the hydrophilic sulfo and hydroxy head groups form a rigid cyclic moiety including two carbons of the C16 alkyl chain based on hydrogen bonding. This highly fixed molecular structure of the C16-4S-5OH in water is maintained in the monomer and micellar states below and above the CMC, respectively.

4.
J Oleo Sci ; 70(9): 1247-1252, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34373406

ABSTRACT

We characterized the adsorption and desorption of α-gel (α-form hydrated crystal) dispersions in aqueous media using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The α-gel was formed from a mixture of N-[3-(dimethylamino)propyl]docosanamide (APA-22) L-lactic acid salt, 1-octadecanol (C18OH), and water. The solid substrate employed in this study as a model for hair was silica. The QCM-D measurements revealed that the α-gel dispersions yielded a rigid adsorption film on the negatively charged silica surface. The adsorption mass decreased with decreasing domain size (on the micrometer scale) of the α-gel dispersions. The adsorption film highly restricted the desorption of the α-gel from the silica surface even after rinsing with water. The adsorption film also exhibited excellent lubrication ability in aqueous media both before and after rinsing with water. We expect that the α-gel formed by APA-22 L-lactic acid is a potential ingredient for formulating an environment-friendly hair conditioner owing to its high adsorption, limited desorption, and excellent lubrication abilities on the solid surface.


Subject(s)
Adsorption , Amides/chemistry , Lactic Acid/chemistry , Lubrication , Quartz Crystal Microbalance Techniques/methods , Fatty Alcohols/chemistry , Gels , Silicon Dioxide/chemistry , Surface Properties , Water/chemistry
5.
J Oleo Sci ; 69(12): 1561-1567, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33177284

ABSTRACT

We determine the effects of the α-gel (α-form hydrated crystal) domain size on the viscosity of water-diluted α-gels consisting of the N-[3-(dimethylamino)propyl]docosanamide (APA-22) L-lactic acid salt, 1-octadecanol (C18OH), and water. A decrease in the C18OH mole content results in increased domain size and viscosity of the water-diluted α-gel system. Additionally, when a sample is prepared by slow cooling and/or at low stirring speed, the domain size and viscosity of the water-diluted α-gel system increase. A similar increase in the domain size and viscosity of the α-gel system is observed for annealed samples. The observed change in the α-gel domain size is explained by the crystal growth theory.


Subject(s)
Amides/chemistry , Gels/chemistry , Lactic Acid/chemistry , Particle Size , Surface-Active Agents/chemistry , Viscosity , Water/chemistry , Crystallization , Hair Preparations
6.
J Oleo Sci ; 69(11): 1403-1409, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33055438

ABSTRACT

We studied the structures and properties of gel samples prepared by mixtures of N-[3-(dimethylamino)propyl]docosanamide (APA-22) acid salt (APA-22 L-lactic acid), 1-octadecanol (C18OH), and water. The gel samples prepared at the mole ratios [APA-22 L-lactic acid]:C18OH = 1:3, 1:4, and 1:5 yielded two phases; one being the α-gel (α-form hydrated crystal) phase, incorporating a significant quantity of water between lamellar bilayers, and the other being the excess water phase. The lamellar d-spacing remained practically unaltered at these mole ratios, thus maintaining the quantity of water incorporated between the lamellar bilayers relatively constant. Starting at 30°C, the gel samples transformed into a lamellar liquid crystal phase at high temperatures (85°C) and a ß-gel phase at low temperatures (5°C). Interestingly, following dilution by pure water, the viscosity of the gel samples decreased with increasing C18OH content. We expect that the viscosity change affects the performance of the gel samples as hair conditioners.


Subject(s)
Amides/chemistry , Surface-Active Agents/chemistry , Crystallization , Gels , Hair Preparations , Lactic Acid/chemistry , Lipid Bilayers/chemistry , Stearic Acids/chemistry , Temperature , Viscosity , Water/chemistry
7.
Anal Sci ; 36(10): 1211-1215, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32418932

ABSTRACT

We developed an instrument that allows us to measure dynamic light scattering from soft materials on solid substrates by avoiding strong background due to the reflection light from substrates. In the instrument, samples on substrates are illuminated by evanescent-light field and the resultant scattered light from the samples is collected with a dark-field optical configuration by employing a high numerical aperture microscope objective. We applied the instrument to measure the dynamic properties of supported lipid bilayers (SLBs), which have been widely utilized in industries as functional materials such as biosensors. From the time course of the scattered light from the SLBs, the power spectrum with the broad peak ranging from 10 to 20 kHz is observed. The use of the microscope objectives enables us to apply the instrument to future light scattering imaging for dynamic properties of soft materials supported on various substrates by combining with conventional microscope systems.

8.
J Phys Chem B ; 122(42): 9786-9791, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30091917

ABSTRACT

Wet soap foam spontaneously imbibes liquid oil without defoaming when it is brought into contact. The kinetics behind this recently observed phenomenon was studied experimentally, with focus on the origin of the suction force and on the oil front dynamics. Using an aqueous foam with an air volume fraction slightly greater than the critical value Ï•C, we show that the pumping pressure of oil and/or miscible liquid into the wet foam is attributed to the interfacial distortion of the bubble surfaces. Two distinct regimes along time t were observed in the oil imbibition dynamics. The proceeding oil front evolves with t1/2 dependency in the early imbibition time in accordance with the classical theory of penetration of a porous medium, whereas it departs into t1/3 at late imbibition time. The latter process is attributed to the elongation of an oil branch trapped inside the foam when pumping of the exterior oil has ceased.

9.
J Colloid Interface Sci ; 270(2): 483-9, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14697716

ABSTRACT

The phase behavior and microstructure of surfactant systems containing a new alkanolamide-type foam booster, dodecanoyl N-methyl ethanolamide (NMEA-12), were investigated by means of phase study and small angle X-ray scattering. Different from other similar alkanolamides, NMEA-12 possesses a low melting point and forms a lyotropic liquid-crystalline phase (L(alpha) phase) at room temperature. This is attributed to the attached methyl group, which increases the fluidity of the molecule. In the SDS/NMEA-12/water system, hexagonal and lamellar (L(alpha)) liquid-crystalline phases are obtained at significantly low surfactant concentrations. The stability of these phases decreases when SDS is replaced with a nonionic surfactant (C12EO8). However, for both ionic and nonionic surfactants, the effective area per surfactant molecule at the interface shrinks upon addition of NMEA-12, indicating that the surfactant layer is getting more compact. The possible implications of these results on the potential applications of NMEA-12 as foam stabilizer are discussed.

10.
J Colloid Interface Sci ; 277(1): 235-42, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15276062

ABSTRACT

The phase behavior and microstructure of mixed nonionic surfactant systems containing poly(oxyethylene) cholesteryl ether (ChEOn, n=15 and 10), a new alkanolamide-type foam booster, dodecanoyl N -methylethanolamide (NMEA-12), and water, were investigated at 25 degrees C by means of visual observation and small-angle X-ray scattering. In the ChEO(15)/water binary system, aqueous micellar (W(m)), discontinuous cubic liquid crystal (I(1)), hexagonal (H(1)), rectangular ribbon (R(1)), lamellar (L(alpha)), and solid (S) phases are successively formed with increasing surfactant concentration. Although the R(1) phase is an intermediate phase formed in a very narrow composition range in conventional surfactant systems, its domain is unusually wider than that of H(1), which may be attributed to the packing constraint caused by the bulky cholesteric group in the lipophilic core of the aggregate. Upon addition of lipophilic NMEA-12 to the ChEO(15)/water binary system, the interfacial curvature of the aggregates decreases, and the micellar or liquid crystal phases formed in the binary system transform to the reverse micellar (O(m)) phase via the L(alpha) phase existing over a wide concentration range. The SAXS results establish an epitaxial relationship between the (11) plane of the R(1) phase and the (10) plane of the L(alpha) phase. The ChEO(10)/NMEA-12/water system shows a phase diagram of similar general appearance, except that the W(m) to R(1) phase transformation occurs via an optically anisotropic liquid crystal phase of unknown structure and the R(1) to L(alpha) phase transition occurs through a narrow intermediate defected lamellar (L(alpha)(H)) phase. The variation in the aggregate size and shape and the unit cell of the R(1) phase formed in ChEOn/NMEA-12/water systems is also discussed.


Subject(s)
Amides/chemistry , Cholesterol/analogs & derivatives , Cholesterol/chemistry , Polyethylene Glycols/chemistry , Water/chemistry , Chemical Phenomena , Chemistry, Physical , Surface Properties
11.
J Phys Chem B ; 118(31): 9438-44, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25019527

ABSTRACT

A very interesting phenomenon has been observed in which foam formed from an aqueous fatty acid potassium salt solution spontaneously absorbs liquid oil immediately upon contact without defoaming. Although this phenomenon initially appeared to be based on capillary action, it was clarified that the liquid oil that flows in foam film did not wet the air/water interface. In this study, it is discussed why aqueous foam can spontaneously soak up liquid oil without defoaming using equilibrium surface tension, dynamic oil/water interfacial tension, and image analysis techniques. The penetration of oil was attributed both to the dynamic decrease in the surface tension at the oil/water interface and to Laplace pressure, depending on the curvature of the plateau border. Therefore, the foam does not absorb the oil, but the oil spontaneously penetrates the foam. This interesting behavior can be expected to be applied to aqueous detergents for liquid oil removal.


Subject(s)
Fatty Acids/chemistry , Oils/chemistry , Potassium/chemistry , Salts/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Air , Pressure , Solutions , Static Electricity , Surface Properties
12.
J Phys Chem B ; 117(17): 5081-9, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23560707

ABSTRACT

The aggregation behavior of sodium 3,6,9,12,15-pentaoxa-heptacosanoate (AEC4-Na) in aqueous solution with increase of the concentration at 25 °C was investigated using differential scanning calorimetry, equilibrium surface tension, solubilization of an oil-soluble dye, steady-state fluorescence, dynamic light scattering, and freeze-fractured transmission electron microscopy. Vesicle formation of AEC4-Na preceded micelle formation below the critical micelle concentration (cmc). The vesicle-to-micelle transition was observed through a narrow concentration region above the cmc. The mean diameters of the vesicles and micelles were not affected by the concentration. All solutions over a wide range of concentrations were homogeneously transparent with a low Krafft point below 0 °C. These results indicate that the AEC4-Na vesicles have a thermodynamically stable structure. Vesicle formation may be caused by a pseudobinary mixed surfactant system composed of monomeric AEC4-Na and an acid soap that consists of a dimer complex formed between AEC4-Na and unneutralized AEC4-Na. The thermodynamic stability would then result from the inhibition of close intermolecular aggregation and flexibility of the molecular shape in the vesicles due to the oxyethylene units in AEC4-Na.


Subject(s)
Fatty Acids/chemistry , Micelles , Polyethylene Glycols/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Calorimetry, Differential Scanning , Coloring Agents , Oils/chemistry , Solutions/chemistry , Surface Tension , Thermodynamics
13.
J Phys Chem B ; 116(36): 11225-33, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22900521

ABSTRACT

Monoalkyl phosphate (MAP) salts are a kind of bivalent anionic surfactants. The difference of properties between half-neutralized monosalt and completely neutralized disalt is very interesting. In this study, the aggregation behavior of monopotassium monododecyl phosphate (MAP-12K) in aqueous solution with an increase in concentration was investigated by surface tension (γ), elemental analysis, gas chromatography, differential scanning calorimetry, steady-state fluorescence, and negative strained transmission electron microscopy techniques. MAP-12K aqueous solution showed some characteristics: (I) Vesicle aggregates were formed at very dilute concentration (1.2 mM). (II) The precipitate of a highly hydrophobic dimer of MAP, which was quaternary neutralized by potassium, was generated only in a certain dilute concentration region (2.7-200 mM) around the critical micelle concentration (cmc = 20 mM). (III) Vesicles spontaneously translate into micelles at the cmc. (IV) In the higher concentration above 200 mM, the solution becomes homogeneous micellar solution. All of these uncommon characteristics are thought to be caused by the generation of the dimer, which is much more hydrophobic than dissolved MAP derivatives, in the complicated chemical equilibria based on the weakly acidic character of MAP. MAP-12K aqueous solution behaves as if it is a binary mixed surfactant solution of hydrophobic dialkyl surfactant and hydrophilic monoalkyl surfactant in spite of a single component solution.

14.
J Colloid Interface Sci ; 348(1): 146-51, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20451210

ABSTRACT

The adsorption kinetics and the surface phase behavior of four different amphiphiles, which are 2-hydroxyethyl laurate (2-HEL), dodecanoyl N-ethanolamide (NHEA-12), dodecanoyl N-methylethanolamide (NMEA-12) and tetradecanoyl N-methylethanolamide (NMEA-14), have been investigated at the air-water interface by film balance, surface tensiometer and Brewster angle microscopy (BAM). The former two amphiphiles show a first-order phase transition from a lower density liquid like phase to a higher density condensed phase in Gibbs adsorption layers. On the other hand, the latter two amphiphiles are unable to show such characteristics under any experimental conditions. The presence of a methyl group in the head group of NMEA-12 sterically hinders the molecules and resists the formation of any condensed phases. This steric hindrance is so high that even an increase in the chain length by two CH(2) groups in NMEA-14 does not allow the formation of condensed domains. Although, both 2-HEL and NHEA-12 are able to form the condensed phase, the domain morphology formed in these monolayers is different from each other. The domains of 2-HEL at lower temperatures are circular having a stripe texture, while those at higher temperatures show fingering patterns having uniform brightness. On the other hand, the domains of NHEA-12 are dendritic in shape. The presence of hydrogen bonding sites close to the interface should be responsible for the formation of such domains in NHEA-12.

15.
J Oleo Sci ; 57(10): 521-7, 2008.
Article in English | MEDLINE | ID: mdl-18781052

ABSTRACT

A new hair-conditioning agent, N-[3-(dimethylamino)propyl]docosanamide (APA-22) hydrochloric acid salt (APA-22 HCl), has excellent solubility in water with a solubility limit over 10-times larger than that of other APA hydrochloric salts with shorter alkyl chain lengths. The physicochemical characteristics of APA-22 HCl were studied at 25 degrees C by using equilibrium surface tension (gamma), solubilization of an oil-soluble dye, steady-state fluorescence, and chloride ion selective electrode techniques. The APA-22 HCl salt is considered to form an aggregate at a concentration, C(1), which is about twice the concentration of the solubility limit of APAs with shorter alkyl chains. At a higher concentration, C(2), the aggregates of APA-22 HCl start forming another kind of aggregate, which is able to solubilize oil-soluble materials. That is, C(1) is considered to represent the critical aggregation concentration (cac) and C(2) a morphology transition. In the concentration region between C(1) and C(2) the solutions are seemingly transparent whereas at above C(2) they appear bluish or translucent. Since the Krafft point of APA-22 HCl is 55 degrees C, all the solutions, including the aggregates, are thought to exist in metastable states. Notably, however, these metastable solutions do not change significantly over a few months. The excellent solubility of APA-22 HCl in water is considered to be a result of this unique stepwise aggregation with increasing concentration.


Subject(s)
Amides/chemistry , Hair Preparations/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Cations/chemistry , Chlorides/analysis , Coloring Agents/chemistry , Ecosystem , Micelles , Molecular Structure , Solubility , Spectrometry, Fluorescence , Stereoisomerism , Surface Tension
16.
J Oleo Sci ; 57(10): 529-38, 2008.
Article in English | MEDLINE | ID: mdl-18781053

ABSTRACT

Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.


Subject(s)
Amides/metabolism , Amides/toxicity , Surface-Active Agents/metabolism , Surface-Active Agents/toxicity , Animals , Biodegradation, Environmental , Cations/chemistry , Cations/metabolism , Cations/toxicity , Daphnia/drug effects , Eukaryota/drug effects , Fishes , Hair Preparations/chemistry , Hair Preparations/metabolism , Hair Preparations/toxicity , Molecular Structure , Surface-Active Agents/chemistry , Toxicity Tests, Acute , Water/chemistry
17.
Langmuir ; 22(5): 2039-44, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16489786

ABSTRACT

The aggregation behaviors of an excellent nonionic foam booster, namely, fatty acid N-methylethanolamide (NMEA-X; X indicates the carbon number of the acyl group), in aqueous solutions have been studied by equilibrium surface tension (gamma), solubilization of oil-soluble dye, and steady-state fluorescence techniques. NMEA, having a longer alkyl chain than NMEA-08, clearly had two break points on the gamma versus log C (where C is concentration) curves. The solubilization of the oil-soluble dye for NMEA aqueous solutions began at the break point of higher concentration in the gamma versus log C curves, so this concentration was confirmed to be the critical micellization concentration (cmc). Above the cmc, however, a separate oil phase of NMEA was observed instead of micelles of limited size. Another break point at lower concentration was also observed in plots of the fluorescence intensity ratio of pyrene, I1/I3, versus log C of NMEA. The gradual decrease of I1/I3 and the appearance of excimer emission of pyrene in the concentration region between the two break points suggest the existence and growth of premicellar aggregates and the solubilization ability of pyrene. Consequently, this break point at lower concentration was assumed to be the critical premicellization concentration (cac). The surface tension reduction in the premicellar region decreased with increasing alkyl chain length of NMEA.

SELECTION OF CITATIONS
SEARCH DETAIL