Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(52): e2311460120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127986

ABSTRACT

The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.


Subject(s)
Breast Neoplasms , Tumor Suppressor Protein p53 , Humans , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Breast Neoplasms/pathology , Genes, p53 , Adipose Tissue/metabolism , Adipocytes/metabolism , Tumor Microenvironment/genetics
2.
Nat Neurosci ; 27(6): 1116-1124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637622

ABSTRACT

Alzheimer's disease (AD) and dementia in general are age-related diseases with multiple contributing factors, including brain inflammation. Microglia, and specifically those expressing the AD risk gene TREM2, are considered important players in AD, but their exact contribution to pathology remains unclear. In this study, using high-throughput mass cytometry in the 5×FAD mouse model of amyloidosis, we identified senescent microglia that express high levels of TREM2 but also exhibit a distinct signature from TREM2-dependent disease-associated microglia (DAM). This senescent microglial protein signature was found in various mouse models that show cognitive decline, including aging, amyloidosis and tauopathy. TREM2-null mice had fewer microglia with a senescent signature. Treating 5×FAD mice with the senolytic BCL2 family inhibitor ABT-737 reduced senescent microglia, but not the DAM population, and this was accompanied by improved cognition and reduced brain inflammation. Our results suggest a dual and opposite involvement of TREM2 in microglial states, which must be considered when contemplating TREM2 as a therapeutic target in AD.


Subject(s)
Aging , Alzheimer Disease , Brain , Disease Models, Animal , Membrane Glycoproteins , Microglia , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Microglia/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , Aging/metabolism , Brain/metabolism , Brain/pathology , Mice, Transgenic , Cellular Senescence/physiology , Cellular Senescence/drug effects , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL