Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Res Sq ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766264

ABSTRACT

Background: Aneurysm wall enhancement (AWE) has the potential to be used as an imaging biomarker for the risk stratification of intracranial aneurysms (IAs). Radiomics provides a refined approach to quantify and further characterize AWE's textural features. This study examines the performance of AWE quantification combined with clinical information in detecting symptomatic IAs. Methods: Ninety patients harboring 104 IAs (29 symptomatic and 75 asymptomatic) underwent high-resolution magnetic resonance imaging (HR-MRI). The assessment of AWE was performed using two different methods: 3D-AWE mapping and composite radiomics-based score (RadScore). The dataset was split into training and testing subsets. The testing set was used to build two different nomograms using each modality of AWE assessment combined with patients' demographic information and aneurysm morphological data. Finally, each nomogram was evaluated on an independent testing set. Results: A total of 22 radiomic features were significantly different between symptomatic and asymptomatic IAs. The 3D-AWE Mapping nomogram achieved an area under the curve (AUC) of 0.77 (63% accuracy, 78% sensitivity and 58% specificity). The RadScore nomogram exhibited a better performance, achieving an AUC of 0.83 (77% accuracy, 89% sensitivity and 73% specificity). Conclusions: Combining AWE quantification through radiomic analysis with patient demographic data in a clinical nomogram achieved high accuracy in detecting symptomatic IAs.

2.
Transl Stroke Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954365

ABSTRACT

Aneurysm wall enhancement (AWE) has the potential to be used as an imaging biomarker for the risk stratification of intracranial aneurysms (IAs). Radiomics provides a refined approach to quantify and further characterize AWE's textural features. This study examines the performance of AWE quantification combined with clinical information in detecting symptomatic IAs. Ninety patients harboring 104 IAs (29 symptomatic and 75 asymptomatic) underwent high-resolution magnetic resonance imaging (HR-MRI). The assessment of AWE was performed using two different methods: 3D-AWE mapping and composite radiomics-based score (RadScore). The dataset was split into training and testing subsets. The testing set was used to build two different nomograms using each modality of AWE assessment combined with patients' clinical information and aneurysm morphological data. Finally, each nomogram was evaluated on an independent testing set. A total of 22 radiomic features were significantly different between symptomatic and asymptomatic IAs. The 3D-AWE mapping nomogram achieved an area under the curve (AUC) of 0.77 (63% accuracy, 78% sensitivity, and 58% specificity). The RadScore nomogram exhibited a better performance, achieving an AUC of 0.83 (77% accuracy, 89% sensitivity, and 73% specificity). The comprehensive analysis of IAs with the quantification of AWE data through radiomic analysis, patient clinical information, and morphological aneurysm metrics achieves a high accuracy in detecting symptomatic IA status.

3.
J Affect Disord ; 368: 448-460, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278469

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is a chronic psychiatric mood disorder that is solely diagnosed based on clinical symptoms. These symptoms often overlap with other psychiatric disorders. Efforts to use machine learning (ML) to create predictive models for BD based on data from brain imaging are expanding but have often been limited using only a single modality and the exclusion of the cerebellum, which may be relevant in BD. METHODS: In this study, we sought to improve ML classification of BD by combining information from structural, functional, and diffusion-weighted imaging. Participants (108 BD I, 78 control) with BD type I and matched controls were recruited into an imaging study. This dataset was randomly divided into training and testing sets. For each of the three modalities, a separate ML model was selected, trained, and then used to generate a prediction of the class of each test subject. Majority voting was used to combine results from the three models to make a final prediction of whether a subject had BD. An independent replication sample was used to evaluate the ability of the ML classification to generalize to data collected at other sites. RESULTS: Combining the three machine learning models through majority voting resulted in an accuracy of 89.5 % for classification of the test subjects as being in the BD or control group. Bootstrapping resulted in a 95 % confidence interval of 78.9 %-97.4 % for test accuracy. Performance was reduced when only using 2 of the 3 modalities. Analysis of feature importance revealed that the cerebellum and nodes of the emotional control network were among the most important regions for classification. The machine learning model performed at chance on the independent replication sample. CONCLUSION: BD I could be identified with high accuracy in our relatively small sample by combining structural, functional, and diffusion-weighted imaging data within a single site but not generalize well to an independent replication sample. Future studies using harmonized imaging protocols may facilitate generalization of ML models.

4.
bioRxiv ; 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36778335

ABSTRACT

Purpose: Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellum with the cerebrum in bipolar disorder and to assess whether any effects might depend on mood. Methods: This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3T MRI scan, which included anatomical imaging as well as resting state BOLD imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were used to in the statistical analysis comparing connectivity of the vermis as well as associations with mood. Potential impacts of medications were also explored. Results: Functional connectivity of the cerebellar vermis in bipolar disorder was found to differ significantly between brain regions known to be involved in the control of emotion, motor function, and language. While connections with emotion and motor control areas were significantly stronger in bipolar disorder, connection to a region associated language production was significantly weaker. In the participants with bipolar disorder, ratings of depression and mania were inversely associated with vermis functional connectivity. No effect of medications on these connections were observed. Conclusion: Together the findings suggest cerebellum may play a compensatory role in bipolar disorder and when it can no longer fulfill this role, depression and mania develop. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.

5.
Front Psychiatry ; 14: 1147540, 2023.
Article in English | MEDLINE | ID: mdl-37215681

ABSTRACT

Purpose: Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellar vermis with the cerebrum in bipolar disorder and to assess whether connectivity might depend on mood. Methods: This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3 T magnetic resonance imaging (MRI) study, which included anatomical as well as resting state Blood Oxygenation Level Dependent (BOLD) imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were included in the statistical analysis comparing connectivity of the vermis. In addition, the data was explored for the potential impacts of mood, symptom burden, and medication in those with bipolar disorder. Results: Functional connectivity between the cerebellar vermis and the cerebrum was found to be aberrant in bipolar disorder. The connectivity of the vermis was found to be greater in bipolar disorder to regions involved in motor control and emotion (trending), while reduced connectivity was observed to a region associated with language production. In the participants with bipolar disorder, past depression symptom burden affected connectivity; however, no effects of medication were observed. Functional connectivity between the cerebellar vermis and all other regions revealed an inverse association with current mood ratings. Conclusion: Together the findings may suggest that the cerebellum plays a compensatory role in bipolar disorder. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.

SELECTION OF CITATIONS
SEARCH DETAIL