Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Beilstein J Org Chem ; 8: 501-13, 2012.
Article in English | MEDLINE | ID: mdl-22509222

ABSTRACT

The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid) and L-glutamine (L-Gln), with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces.

2.
PLoS One ; 7(10): e48427, 2012.
Article in English | MEDLINE | ID: mdl-23119011

ABSTRACT

Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto aromatic substrates in biosynthetic pathways of microbial secondary metabolites. Therefore, these enzymes contribute to the chemical diversity of natural products. Prenylation is frequently essential for the pharmacological properties of these metabolites, including their antibiotic and antitumor activities. Recently, the first phenazine PTs, termed EpzP and PpzP, were isolated and biochemically characterized. The two enzymes play a central role in the biosynthesis of endophenazines by catalyzing the regiospecific prenylation of 5,10-dihydrophenazine-1-carboxylic acid (dhPCA) in the secondary metabolism of two different Streptomyces strains. Here we report crystal structures of EpzP in its unliganded state as well as bound to S-thiolodiphosphate (SPP), thus defining the first three-dimensional structures for any phenazine PT. A model of a ternary complex resulted from in silico modeling of dhPCA and site-directed mutagenesis. The structural analysis provides detailed insight into the likely mechanism of phenazine prenylation. The catalytic mechanism suggested by the structure identifies amino acids that are required for catalysis. Inspection of the structures and the model of the ternary complex furthermore allowed us to rationally engineer EpzP variants with up to 14-fold higher catalytic reaction rate compared to the wild-type enzyme. This study therefore provides a solid foundation for additional enzyme modifications that should result in efficient, tailor-made biocatalysts for phenazines production.


Subject(s)
Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Protein Engineering , Amino Acid Sequence , Catalysis , Catalytic Domain/genetics , Dimethylallyltranstransferase/genetics , Molecular Docking Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Phenazines/chemistry , Phenazines/metabolism , Prenylation , Protein Conformation , Sequence Alignment , Streptomyces/genetics , Streptomyces/metabolism , Structure-Activity Relationship
3.
PLoS One ; 6(11): e27336, 2011.
Article in English | MEDLINE | ID: mdl-22140437

ABSTRACT

The linkage of isoprenoid and aromatic moieties, catalyzed by aromatic prenyltransferases (PTases), leads to an impressive diversity of primary and secondary metabolites, including important pharmaceuticals and toxins. A few years ago, a hydroxynaphthalene PTase, NphB, featuring a novel ten-stranded ß-barrel fold was identified in Streptomyces sp. strain CL190. This fold, termed the PT-barrel, is formed of five tandem ααßß structural repeats and remained exclusive to the NphB family until its recent discovery in the DMATS family of indole PTases. Members of these two families exist only in fungi and bacteria, and all of them appear to catalyze the prenylation of aromatic substrates involved in secondary metabolism. Sequence comparisons using PSI-BLAST do not yield matches between these two families, suggesting that they may have converged upon the same fold independently. However, we now provide evidence for a common ancestry for the NphB and DMATS families of PTases. We also identify sequence repeats that coincide with the structural repeats in proteins belonging to these two families. Therefore we propose that the PT-barrel arose by amplification of an ancestral ααßß module. In view of their homology and their similarities in structure and function, we propose to group the NphB and DMATS families together into a single superfamily, the PT-barrel superfamily.


Subject(s)
Bacteria/enzymology , Dimethylallyltranstransferase/genetics , Evolution, Molecular , Fungi/enzymology , Hydrocarbons, Aromatic/metabolism , Biocatalysis , Cell Membrane/enzymology , Cluster Analysis , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/classification , Hydrocarbons, Aromatic/chemistry , Protein Binding , Protein Structure, Secondary
4.
Phytochemistry ; 70(15-16): 1728-38, 2009.
Article in English | MEDLINE | ID: mdl-19559450

ABSTRACT

Aromatic prenyltransferases transfer prenyl moieties onto aromatic acceptor molecules, catalyzing an electrophilic substitution of the aromatic ring under formation of carbon-carbon bonds. They give rise to an astounding diversity of primary and secondary metabolites in plants, fungi and bacteria. This review describes a recently discovered family of aromatic prenyltransferases. The structure of these enyzmes shows a type of beta/alpha fold with antiparallel beta strands. Due to the alpha-beta-beta-alpha architecture of this fold, this group of enzymes was designated as ABBA prenyltransferases. They lack the (N/D)DxxD motif which is characteristic for many other prenyltransferases. At present, 14 genes with sequence similarity to ABBA prenyltransferases can be identified in the database. A phylogenetic analysis of these genes separates them into two clades. One of them comprises the 4-hydroxyphenylpyruvate 3-dimethylallyltransferases CloQ and NovQ involved in aminocoumarin antibiotic biosynthesis in Streptomyces strains, as well as four genes of unknown function from fungal genomes. The other clade comprises genes involved in the biosynthesis of prenylated naphthoquinones and prenylated phenazines in different streptomycetes. ABBA prenyltransferases are soluble biocatalysts which can easily be obtained as homogeneous proteins in significant amounts. Their substrates are accommodated in a surprisingly spacious central cavity which explains their promiscuity for different aromatic substrates. Therefore, the enzymes of this family represent attractive tools for the chemoenzymatic synthesis of bioactive molecules.


Subject(s)
Coumarins/metabolism , Dimethylallyltranstransferase/metabolism , Phenazines/metabolism , Streptomyces/metabolism , Terpenes/metabolism , Coumarins/chemistry , Molecular Structure , Phenazines/chemistry , Terpenes/chemistry
5.
J Biol Chem ; 284(21): 14439-47, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19339241

ABSTRACT

The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C-C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The K(m) value for dimethylallyl diphosphate was determined as 116 microm. For dihydro-PCA, half-maximal velocity was observed at 35 microm. K(cat) was calculated as 0.435 s(-1). PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives.


Subject(s)
Bacterial Proteins/metabolism , Dimethylallyltranstransferase/metabolism , Phenazines/metabolism , Prenylation , Streptomyces/enzymology , Bacterial Proteins/isolation & purification , Carboxylic Acids/chemistry , Chromatography, High Pressure Liquid , Cloning, Molecular , Dimethylallyltranstransferase/isolation & purification , Gene Silencing , Genes, Bacterial , Molecular Sequence Data , Multigene Family , Phenanthrenes/chemistry , Phenazines/chemistry , Streptomyces/genetics , Streptomyces coelicolor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL