Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 569(7758): 663-671, 2019 05.
Article in English | MEDLINE | ID: mdl-31142858

ABSTRACT

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Subject(s)
Biomarkers/metabolism , Computational Biology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/genetics , Prediabetic State/microbiology , Proteome/metabolism , Transcriptome , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Biomarkers/analysis , Cohort Studies , Datasets as Topic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Healthy Volunteers , Humans , Inflammation/metabolism , Influenza Vaccines/immunology , Insulin/metabolism , Insulin Resistance , Longitudinal Studies , Male , Microbiota/physiology , Middle Aged , Prediabetic State/genetics , Prediabetic State/metabolism , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Stress, Physiological , Vaccination/statistics & numerical data
2.
PLoS Biol ; 15(1): e2001402, 2017 01.
Article in English | MEDLINE | ID: mdl-28081144

ABSTRACT

A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography.


Subject(s)
Biosensing Techniques , Electronics, Medical , Health , Patient-Specific Modeling , Circadian Rhythm/physiology , Electronics, Medical/instrumentation , Humans , Inflammation/diagnosis , Insulin/metabolism , Insulin Resistance , Oxygen/metabolism , Partial Pressure , Precision Medicine , Radiation , Reproducibility of Results
3.
Article in English | MEDLINE | ID: mdl-30487145

ABSTRACT

Exome sequencing is increasingly utilized in both clinical and nonclinical settings, but little is known about its utility in healthy individuals. Most previous studies on this topic have examined a small subset of genes known to be implicated in human disease and/or have used automated pipelines to assess pathogenicity of known variants. To determine the frequency of both medically actionable and nonactionable but medically relevant exome findings in the general population we assessed the exomes of 70 participants who have been extensively characterized over the past several years as part of a longitudinal integrated multiomics profiling study. We analyzed exomes by identifying rare likely pathogenic and pathogenic variants in genes associated with Mendelian disease in the Online Mendelian Inheritance in Man (OMIM) database. We then used American College of Medical Genetics (ACMG) guidelines for the classification of rare sequence variants. Additionally, we assessed pharmacogenetic variants. Twelve out of 70 (17%) participants had medically actionable findings in Mendelian disease genes. Five had phenotypes or family histories associated with their genetic variants. The frequency of actionable variants is higher than that reported in most previous studies and suggests added benefit from utilizing expanded gene lists and manual curation to assess actionable findings. A total of 63 participants (90%) had additional nonactionable findings, including 60 who were found to be carriers for recessive diseases and 21 who have increased Alzheimer's disease risk because of heterozygous or homozygous APOE e4 alleles (18 participants had both). Our results suggest that exome sequencing may have considerably more utility for health management in the general population than previously thought.


Subject(s)
Exome Sequencing/ethics , Exome Sequencing/trends , Incidental Findings , Adult , Alleles , Cohort Studies , Databases, Genetic , Exome/genetics , Female , Gene Frequency , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Genetic Variation/genetics , Genomics , Genotype , Healthy Volunteers , Humans , Male , Phenotype , White People/genetics , Exome Sequencing/methods
4.
Cell Syst ; 6(2): 157-170.e8, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29361466

ABSTRACT

Advances in omics technologies now allow an unprecedented level of phenotyping for human diseases, including obesity, in which individual responses to excess weight are heterogeneous and unpredictable. To aid the development of better understanding of these phenotypes, we performed a controlled longitudinal weight perturbation study combining multiple omics strategies (genomics, transcriptomics, multiple proteomics assays, metabolomics, and microbiomics) during periods of weight gain and loss in humans. Results demonstrated that: (1) weight gain is associated with the activation of strong inflammatory and hypertrophic cardiomyopathy signatures in blood; (2) although weight loss reverses some changes, a number of signatures persist, indicative of long-term physiologic changes; (3) we observed omics signatures associated with insulin resistance that may serve as novel diagnostics; (4) specific biomolecules were highly individualized and stable in response to perturbations, potentially representing stable personalized markers. Most data are available open access and serve as a valuable resource for the community.


Subject(s)
Precision Medicine/methods , Weight Gain/genetics , Weight Loss/genetics , Adult , Biomarkers/blood , Genomics/methods , Humans , Insulin Resistance/genetics , Male , Metabolomics/methods , Obesity/genetics , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL