Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 184(25): 6081-6100.e26, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34861191

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Pancreatic Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , HEK293 Cells , Humans , Inhibitor of Differentiation Proteins/immunology , Male , Mice , Mice, Knockout , Mice, Nude , Mice, SCID , Neoplasm Proteins/immunology , SOXC Transcription Factors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL