ABSTRACT
Direct cell reprogramming represents a promising new myocardial regeneration strategy involving in situ transdifferentiation of cardiac fibroblasts into induced cardiomyocytes. Adult human cells are relatively resistant to reprogramming, however, likely because of epigenetic restraints on reprogramming gene activation. We hypothesized that modulation of the epigenetic regulator gene p63 could improve the efficiency of human cell cardio-differentiation. qRT-PCR analysis demonstrated significantly increased expression of a panel of cardiomyocyte marker genes in neonatal rat and adult rat and human cardiac fibroblasts treated with p63 shRNA (shp63) and the cardio-differentiation factors Hand2/Myocardin (H/M) versus treatment with Gata4, Mef2c and Tbx5 (GMT) with or without shp63 (p < 0.001). FACS analysis demonstrated that shp63+ H/M treatment of human cardiac fibroblasts significantly increased the percentage of cells expressing the cardiomyocyte marker cTnT compared to GMT treatment with or without shp63 (14.8% ± 1.4% versus 4.3% ± 1.1% and 3.1% ± 0.98%, respectively; p < 0.001). We further demonstrated that overexpression of the p63-transactivation inhibitory domain (TID) interferes with the physical interaction of p63 with the epigenetic regulator HDAC1 and that human cardiac fibroblasts treated with p63-TID+ H/M demonstrate increased cardiomyocyte marker gene expression compared to cells treated with shp63+ H/M (p < 0.05). Whereas human cardiac fibroblasts treated with GMT alone failed to contract in co-culture experiments, human cardiac fibroblasts treated with shp63+ HM or p63-TID+ H/M demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes. These findings demonstrate that p63 silencing provides enhanced rat and human cardiac fibroblast transdifferentiation into induced cardiomyocytes compared to a standard reprogramming strategy. p63-TID overexpression may be a useful reprogramming strategy for overcoming epigenetic barriers to human fibroblast cardio-differentiation.
Subject(s)
Myocytes, Cardiac , T-Box Domain Proteins , Animals , Cellular Reprogramming , Epigenesis, Genetic , Fibroblasts/metabolism , Humans , Membrane Proteins/genetics , Myocytes, Cardiac/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Rats , T-Box Domain Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Fibroblast reprogramming offers the potential for myocardial regeneration via in situ cell transdifferentiation. We explored a novel strategy leveraging endothelial cell plasticity to enhance reprogramming efficiency. Rat cardiac endothelial cells and fibroblasts were treated with Gata4, Mef2c, and Tbx5 (GMT) to assess the cardio-differentiation potential of these cells. The endothelial cell transdifferentiation factor ETV2 was transiently over-expressed in fibroblasts followed by GMT treatment to assess "trans-endothelial" cardio-differentiation. Endothelial cells treated with GMT generated more cTnT+ cells than did cardiac fibroblasts (13% ± 2% vs 4% ± 0.5%, p < 0.01). Cardiac fibroblasts treated with ETV2 demonstrated increased endothelial cell markers, and when then treated with GMT yielded greater prevalence of cells expressing cardiomyocyte markers including cTnT than did fibroblasts treated with GMT or ETV2 (10.3% ± 0.2% vs 1.7% ± 0.06% and 0.6 ± 0.03, p < 0.01). Rat cardiac fibroblasts treated with GMT + ETV2 demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes, whereas cells treated with GMT or ETV2 alone failed to contract in co-culture experiments. Human cardiac fibroblasts treated with ETV2 and then GMT likewise demonstrated greater prevalence of cTnT expression than did cells treated with GMT alone (2.8-fold increase, p < 0.05). Cardiac fibroblast transitioning through a trans-endothelial state appears to enhance cardio-differentiation by enhancing fibroblast plasticity.
Subject(s)
Cell Transdifferentiation , Cellular Reprogramming , Endothelium/metabolism , Fibroblasts/metabolism , Animals , Animals, Newborn , Cell Plasticity , Cell Separation , Coculture Techniques , Endothelial Cells/metabolism , Flow Cytometry , Humans , Myocytes, Cardiac/metabolism , Prevalence , RatsABSTRACT
Background The conversion of fibroblasts into induced cardiomyocytes may regenerate myocardial tissue from cardiac scar through in situ cell transdifferentiation. The efficiency transdifferentiation is low, especially for human cells. We explored the leveraging of Hippo pathway intermediates to enhance induced cardiomyocyte generation. Methods and Results We screened Hippo effectors Yap (yes-associated protein), Taz (transcriptional activator binding domain), and Tead1 (TEA domain transcription factor 1; Td) for their reprogramming efficacy with cardio-differentiating factors Gata4, Mef2C, and Tbx5 (GMT). Td induced nearly 3-fold increased expression of cardiomyocyte marker cTnT (cardiac troponin T) by mouse embryonic and adult rat fibroblasts versus GMT administration alone (P<0.0001), while Yap and Taz failed to enhance cTnT expression. Serial substitution demonstrated that Td replacement of TBX5 induced the greatest cTnT expression enhancement and sarcomere organization in rat fibroblasts treated with all GMT substitutions (GMTd versus GMT: 17±1.2% versus 5.4±0.3%, P<0.0001). Cell contractility (beating) was seen in 6% of GMTd-treated cells by 4 weeks after treatment, whereas no beating GMT-treated cells were observed. Human cardiac fibroblasts likewise demonstrated increased cTnT expression with GMTd versus GMT treatment (7.5±0.3% versus 3.0±0.3%, P<0.01). Mechanistically, GMTd administration increased expression of the trimethylated lysine 4 of histone 3 (H3K4me3) mark at the promoter regions of cardio-differentiation genes and mitochondrial biogenesis regulator genes in rat and human fibroblast, compared with GMT. Conclusions These data suggest that the Hippo pathway intermediate Tead1 is an important regulator of cardiac reprogramming that increases the efficiency of maturate induced cardiomyocytes generation and may be a vital component of human cardiodifferentiation strategies.
Subject(s)
Fibroblasts , Hippo Signaling Pathway , Myocytes, Cardiac , TEA Domain Transcription Factors , Animals , Cell Transdifferentiation , Fibroblasts/physiology , Mice , Myocytes, Cardiac/physiology , Rats , TEA Domain Transcription Factors/metabolismABSTRACT
Background Given known inefficiencies in reprogramming of fibroblasts into mature induced cardiomyocytes (iCMs), we sought to identify small molecules that would overcome these barriers to cardiac cell transdifferentiation. Methods and Results We screened alternative combinations of compounds known to impact cell reprogramming using morphologic and functional cell differentiation assays in vitro. After screening 6 putative reprogramming factors, we found that a combination of the histone deacetylase inhibitor sodium butyrate, the WNT inhibitor ICG-001, and the cardiac growth regulator retinoic acid (RA) maximally enhanced iCM generation from primary rat cardiac fibroblasts when combined with administration of the cardiodifferentiating transcription factors Gata4, Mef2C, and Tbx5 (GMT) compared with GMT administration alone (23±1.5% versus 3.3±0.2%; P<0.0001). Expression of the cardiac markers cardiac troponin T, Myh6, and Nkx2.5 was upregulated as early as 10 days after GMT-sodium butyrate, ICG-001, and RA treatment. Human iCM generation was likewise enhanced when administration of the human cardiac reprogramming factors GMT, Hand2, and Myocardin plus miR-590 was combined with sodium butyrate, ICG-001, and RA compared with GMT, Hand2, and Myocardin plus miR-590 treatment alone (25±1.3% versus 5.7±0.4%; P<0.0001). Rat and human iCMs also more frequently demonstrated spontaneous beating in coculture with neonatal cardiomyocytes with the addition of sodium butyrate, ICG-001, and RA to transcription factor cocktails compared with transcription factor treatment alone. Conclusions The combined administration of histone deacetylase and WNT inhibitors with RA enhances rat and human iCM generation induced by transcription factor administration alone. These findings suggest opportunities for improved translational approaches for cardiac regeneration.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Butyric Acid/pharmacology , Cell Transdifferentiation/drug effects , Cellular Reprogramming Techniques , Cellular Reprogramming/drug effects , Fibroblasts/drug effects , Histone Deacetylase Inhibitors/pharmacology , Myocytes, Cardiac/drug effects , Pyrimidinones/pharmacology , Tretinoin/pharmacology , Animals , Cells, Cultured , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Male , Myocytes, Cardiac/metabolism , Phenotype , Rats, Sprague-Dawley , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway/drug effectsABSTRACT
OBJECTIVE: Reprogramming of fibroblasts into induced cardiomyocytes represents a potential new therapy for heart failure. We hypothesized that inactivation of p63, a p53 gene family member, may help overcome human cell resistance to reprogramming. METHODS: p63 Knockout (-/-) and knockdown murine embryonic fibroblasts (MEFs), p63-/- adult murine cardiac fibroblasts, and human cardiac fibroblasts were assessed for cardiomyocyte-specific feature changes, with or without treatment by the cardiac transcription factors Hand2-Myocardin (HM). RESULTS: Flow cytometry revealed that a significantly greater number of p63-/- MEFs expressed the cardiac-specific marker cardiac troponin T (cTnT) in culture compared with wild-type (WT) cells (38% ± 11% vs 0.9% ± 0.9%, P < .05). HM treatment of p63-/- MEFs increased cTnT expression to 74% ± 3% of cells but did not induce cTnT expression in wild-type murine embryonic fibroblasts. shRNA-mediated p63 knockdown likewise yielded a 20-fold increase in cTnT microRNA expression compared with untreated MEFs. Adult murine cardiac fibroblasts demonstrated a 200-fold increase in cTnT gene expression after inducible p63 knockout and expressed sarcomeric α-actinin as well as cTnT. These p63-/- adult cardiac fibroblasts exhibited calcium transients and electrically stimulated contractions when co-cultured with neonatal rat cardiomyocytes and treated with HM. Increased expression of cTnT and other marker genes was also observed in p63 knockdown human cardiac fibroblasts procured from patients undergoing procedures for heart failure. CONCLUSIONS: Downregulation of p63 facilitates direct cardiac cellular reprogramming and may help overcome the resistance of human cells to reprogramming.
Subject(s)
Cellular Reprogramming/genetics , Fibroblasts/cytology , Gene Silencing/physiology , Myocytes, Cardiac/cytology , Phosphoproteins/genetics , Trans-Activators/genetics , Animals , Cells, Cultured , Humans , Mice , Rats , Troponin T/analysis , Troponin T/metabolismABSTRACT
Organelle biogenesis requires proper transport of proteins from their site of synthesis to their target subcellular compartment1-3. Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and traffic through the Golgi complex before being transferred to the endolysosomal system4-6, but how they are transferred from the ER to the Golgi is unknown. Here, we show that ER-to-Golgi transfer of lysosomal enzymes requires CLN8, an ER-associated membrane protein whose loss of function leads to the lysosomal storage disorder, neuronal ceroid lipofuscinosis 8 (a type of Batten disease)7. ER-to-Golgi trafficking of CLN8 requires interaction with the COPII and COPI machineries via specific export and retrieval signals localized in the cytosolic carboxy terminus of CLN8. CLN8 deficiency leads to depletion of soluble enzymes in the lysosome, thus impairing lysosome biogenesis. Binding to lysosomal enzymes requires the second luminal loop of CLN8 and is abolished by some disease-causing mutations within this region. Our data establish an unanticipated example of an ER receptor serving the biogenesis of an organelle and indicate that impaired transport of lysosomal enzymes underlies Batten disease caused by mutations in CLN8.
Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Animals , HeLa Cells , Humans , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Protein Binding , Protein Transport/geneticsABSTRACT
OBJECTIVE: The administration of a variety of reprogramming factor cocktails has now been shown to reprogram cardiac fibroblasts into induced cardiomyocyte-like cells. However, reductions in ventricular fibrosis observed after reprogramming factor administration seem to far exceed the extent of induced cardiomyocyte-like cell generation in vivo. We investigated whether reprogramming factor administration might primarily play a role in activating antifibrotic molecular pathways. METHODS: Adult rat cardiac fibroblasts were infected with lentivirus encoding the transcription factors Gata4, Mef2c, or Tbx5, all 3 vectors, or a green fluorescent protein control vector. Gene and protein expression assays were performed to identify relevant antifibrotic targets of these factors. The antifibrotic effects of these factors were then investigated in a rat coronary ligation model. RESULTS: Gata4, Mef2c, or Tbx5 administration to rat cardiac fibroblasts in vitro significantly downregulated expression of Snail and the profibrotic factors connective tissue growth factor, collagen1a1, and fibronectin. Of these factors, Gata4 was shown to be the one responsible for the downregulation of the profibrotic factors and Snail (mRNA expression fold change relative to green fluorescent protein for Snail, Gata4: 0.5 ± 0.3, Mef2c: 1.3 ± 1.0, Tbx5: 0.9 ± 0.5, Gata4, Mef2c, or Tbx5: 0.6 ± 0.2, P < .05). Chromatin immunoprecipitation quantitative polymerase chain reaction identified Gata4 binding sites in the Snail promoter. In a rat coronary ligation model, only Gata4 administration alone improved postinfarct ventricular function and reduced the extent of postinfarct fibrosis. CONCLUSIONS: Gata4 administration reduces postinfarct ventricular fibrosis and improves ventricular function in a rat coronary ligation model, potentially as a result of Gata4-mediated downregulation of the profibrotic mediator Snail.
Subject(s)
Cellular Reprogramming/genetics , Fibroblasts/physiology , Fibrosis , GATA4 Transcription Factor , Lentivirus , Myocytes, Cardiac/physiology , Animals , Cellular Reprogramming Techniques , Collagen Type I/analysis , Collagen Type I, alpha 1 Chain , Connective Tissue Growth Factor/analysis , Down-Regulation , Fibronectins/analysis , Fibrosis/metabolism , Fibrosis/prevention & control , GATA4 Transcription Factor/metabolism , GATA4 Transcription Factor/pharmacology , Genetic Vectors , MEF2 Transcription Factors/metabolism , MEF2 Transcription Factors/pharmacology , Rats , Signal Transduction , Snail Family Transcription Factors , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/pharmacokinetics , Zinc FingersABSTRACT
OBJECTIVE: The reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells improves ventricular function in myocardial infarction models. Only integrating persistent expression vectors have thus far been used to induce reprogramming, potentially limiting its clinical applicability. We therefore tested the reprogramming potential of nonintegrating, acute expression adenoviral (Ad) vectors. METHODS: Ad or lentivirus vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) were validated in vitro. Sprague-Dawley rats then underwent coronary ligation and Ad-mediated administration of vascular endothelial growth factor to generate infarct prevascularization. Three weeks later, animals received Ad or lentivirus encoding G, M, or T (AdGMT or LentiGMT) or an equivalent dose of a null vector (n = 11, 10, and 10, respectively). Outcomes were analyzed by echocardiography, magnetic resonance imaging, and histology. RESULTS: Ad and lentivirus vectors provided equivalent G, M, and T expression in vitro. AdGMT and LentiGMT both likewise induced expression of the cardiomyocyte marker cardiac troponin T in approximately 6% of cardiac fibroblasts versus <1% cardiac troponin T expression in AdNull (adenoviral vector that does not encode a transgene)-treated cells. Infarcted myocardium that had been treated with AdGMT likewise demonstrated greater density of cells expressing the cardiomyocyte marker beta myosin heavy chain 7 compared with AdNull-treated animals. Echocardiography demonstrated that AdGMT and LentiGMT both increased ejection fraction compared with AdNull (AdGMT: 21% ± 3%, LentiGMT: 14% ± 5%, AdNull: -0.4% ± 2%; P < .05). CONCLUSIONS: Ad vectors are at least as effective as lentiviral vectors in inducing cardiac fibroblast transdifferentiation into induced cardiomyocyte-like cells and improving cardiac function in postinfarct rat hearts. Short-term expression Ad vectors may represent an important means to induce cardiac cellular reprogramming in humans.
Subject(s)
Cellular Reprogramming Techniques/methods , Myocardial Infarction/pathology , Myocytes, Cardiac/pathology , Regeneration , Adenoviridae , Animals , Cell Transdifferentiation , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Transfer Techniques , Genetic Vectors , Male , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/pharmacologyABSTRACT
BACKGROUND: The stem cell factor spalt-like transcription factor 4 (SALL4) plays important roles in normal hematopoiesis and also in leukemogenesis. We previously reported that SALL4 exerts its effect by recruiting important epigenetic factors such as DNA methyltransferases DNMT1 and lysine-specific demethylase 1 (LSD1/KDM1A). Both of these proteins are critically involved in mixed lineage leukemia (MLL)-rearranged (MLL-r) leukemia, which has a very poor clinical prognosis. Recently, SALL4 has been further linked to the functions of MLL and its target gene homeobox A9 (HOXA9). However, it remains unclear whether SALL4 is indeed a key player in MLL-r leukemia pathogenesis. METHODS: Using a mouse bone marrow retroviral transduction/ transplantation approach combined with tamoxifen-inducible, CreERT2-mediated Sall4 gene deletion, we studied SALL4 functions in leukemic transformation that was induced by MLL-AF9-one of the most common MLL-r oncoproteins found in patients. In addition, the underlying transcriptional and epigenetic mechanisms were explored using chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq), mRNA microarray, qRT-PCR, histone modification, co-immunoprecipitation (co-IP), cell cycle, and apoptosis assays. The effects of SALL4 loss on normal hematopoiesis in mice were also investigated. RESULTS: In vitro and in vivo studies revealed that SALL4 expression is critically required for MLL-AF9-induced leukemic transformation and disease progression in mice. Loss of SALL4 in MLL-AF9-transformed cells induced apoptosis and cell cycle arrest at G1. ChIP-Seq assay identified that Sall4 binds to key MLL-AF9 target genes and important MLL-r or non-MLL-r leukemia-related genes. ChIP-PCR assays indicated that SALL4 affects the levels of the histone modification markers H3K79me2/3 and H3K4me3 at MLL-AF9 target gene promoters by physically interacting with DOT1-like histone H3K79 methyltransferase (DOT1l) and LSD1/KDM1A, and thereby regulates transcript expression. Surprisingly, normal Sall4 f/f /CreERT2 mice treated with tamoxifen or vav-Cre-mediated (hematopoietic-specific) Sall4 -/- mice were healthy and displayed no significant hematopoietic defects. CONCLUSIONS: Our findings indicate that SALL4 critically contributes to MLL-AF9-induced leukemia, unraveling the underlying transcriptional and epigenetic mechanisms in this disease and suggesting that selectively targeting the SALL4 pathway may be a promising approach for managing human MLL-r leukemia.
Subject(s)
DNA-Binding Proteins/genetics , Hematopoietic Stem Cells/physiology , Histones/metabolism , Leukemia/genetics , Transcription Factors/genetics , Animals , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/metabolism , Leukemia/pathology , Mice , Mice, Transgenic , Transcription Factors/metabolismABSTRACT
This corrects the article DOI: 10.1038/ncomms14338.
ABSTRACT
Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.
Subject(s)
Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Trehalose/pharmacology , Animals , Astrocytes , Autophagy/physiology , Brain/cytology , Brain/drug effects , Brain/pathology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Disease Models, Animal , Fibroblasts , Gene Knockdown Techniques , HeLa Cells , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons , Neuroprotective Agents/therapeutic use , Phosphorylation , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Trehalose/therapeutic useABSTRACT
BACKGROUND: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells represents a promising potential new therapy for treating heart disease, inducing significant improvements in postinfarct ventricular function in rodent models. Because reprogramming factors effective in transdifferentiating rodent cells are not sufficient to reprogram human cells, we sought to identify reprogramming factors potentially applicable to human studies. METHODS AND RESULTS: Lentivirus vectors expressing Gata4, Mef2c, and Tbx5 (GMT); Hand2 (H), Myocardin (My), or microRNA (miR)-590 were administered to rat, porcine, and human cardiac fibroblasts in vitro. induced cardiomyocyte-like cell production was then evaluated by assessing expression of the cardiomyocyte marker, cardiac troponin T (cTnT), whereas signaling pathway studies were performed to identify reprogramming factor targets. GMT administration induced cTnT expression in ≈6% of rat fibroblasts, but failed to induce cTnT expression in porcine or human cardiac fibroblasts. Addition of H/My and/or miR-590 to GMT administration resulted in cTNT expression in ≈5% of porcine and human fibroblasts and also upregulated the expression of the cardiac genes, MYH6 and TNNT2. When cocultured with murine cardiomyocytes, cTnT-expressing porcine cardiac fibroblasts exhibited spontaneous contractions. Administration of GMT plus either H/My or miR-590 alone also downregulated fibroblast genes COL1A1 and COL3A1. miR-590 was shown to directly suppress the zinc finger protein, specificity protein 1 (Sp1), which was able to substitute for miR-590 in inducing cellular reprogramming. CONCLUSIONS: These data support porcine studies as a surrogate for testing human cardiac reprogramming, and suggest that miR-590-mediated repression of Sp1 represents an alternative pathway for enhancing human cardiac cellular reprogramming.