Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Methods Enzymol ; 701: 47-82, 2024.
Article in English | MEDLINE | ID: mdl-39025580

ABSTRACT

Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the "density threshold affinity." The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between "bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows "bead-level" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.


Subject(s)
Molecular Dynamics Simulation , Protein Binding , Binding Sites , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL