Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neuroinflammation ; 20(1): 128, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37244986

ABSTRACT

Increasing evidence has connected the development of certain neuropsychiatric disorders, as well as neurodegenerative diseases, to stress-induced dysregulation of the immune system. We have shown that escapable (ES) and inescapable (IS) footshock stress, and memories associated with ES or IS, can differentially alter inflammatory-related gene expression in brain in a region dependent manner. We have also demonstrated that the basolateral amygdala (BLA) regulates stress- and fear memory-induced alterations in sleep, and that differential sleep and immune responses in the brain to ES and IS appear to be integrated during fear conditioning and then reproduced by fear memory recall. In this study, we investigated the role of BLA in influencing regional inflammatory responses within the hippocampus (HPC) and medial prefrontal cortex (mPFC) by optogenetically stimulating or inhibiting BLA in male C57BL/6 mice during footshock stress in our yoked shuttlebox paradigm based on ES and IS. Then, mice were immediately euthanized and RNA extracted from brain regions of interest and loaded into NanoString® Mouse Neuroinflammation Panels for compilation of gene expression profiles. Results showed differential regional effects in gene expression and activated pathways involved in inflammatory-related signaling following ES and IS, and these differences were altered depending on amygdalar excitation or inhibition. These findings demonstrate that the stress-induced immune response, or "parainflammation", is affected by stressor controllability and that BLA influences regional parainflammation to ES or IS in HPC and mPFC. The study illustrates how stress-induced parainflammation can be regulated at the neurocircuit level and suggests that this approach can be useful for uncovering circuit and immune interactions in mediating differential stress outcomes.


Subject(s)
Basolateral Nuclear Complex , Mice , Male , Animals , Basolateral Nuclear Complex/physiology , Prefrontal Cortex/metabolism , Mice, Inbred C57BL , Brain , Amygdala
2.
Psychol Med ; 53(10): 4675-4695, 2023 07.
Article in English | MEDLINE | ID: mdl-36377491

ABSTRACT

BACKGROUND: We provide an umbrella review of the reported polysomnographic changes in patients with neuropsychiatric diseases compared with healthy controls. METHODS: An electronic literature search was conducted in EMBASE, MEDLINE, All EBM databases, CINAHL, and PsycINFO. Meta-analyses of case-control studies investigating the polysomnographic changes in patients with neuropsychiatric diseases were included. For each meta-analysis, we estimated the summary effect size using random effects models, the 95% confidence interval, and the 95% prediction interval. We also estimated between-study heterogeneity, evidence of excess significance bias, and evidence of small-study effects. The levels of evidence of polysomnographic changes in neuropsychiatric diseases were ranked as follows: not significant, weak, suggestive, highly suggestive, or convincing. RESULTS: We identified 27 articles, including 465 case-control studies in 27 neuropsychiatric diseases. The levels of evidence of polysomnographic changes in neuropsychiatric diseases were highly suggestive for increased sleep latency and decreased sleep efficiency (SE) in major depressive disorder (MDD), increased N1 percentage, and decreased N2 percentage, SL and REML in narcolepsy, and decreased rapid eye movement (REM) sleep percentage in Parkinson's disease (PD). The suggestive evidence decreased REM latency in MDD, decreased total sleep time and SE in PD, and decreased SE in posttraumatic stress disorder and in narcolepsy. CONCLUSIONS: The credibility of evidence for sleep characteristics in 27 neuropsychiatric diseases varied across polysomnographic variables and diseases. When considering the patterns of altered PSG variables, no two diseases had the same pattern of alterations, suggesting that specific sleep profiles might be important dimensions for defining distinct neuropsychiatric disorders.


Subject(s)
Depressive Disorder, Major , Narcolepsy , Parkinson Disease , Sleep Wake Disorders , Humans , Depressive Disorder, Major/diagnosis , Polysomnography , Sleep , Sleep Wake Disorders/diagnosis , Meta-Analysis as Topic
3.
J Integr Neurosci ; 22(4): 100, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37519182

ABSTRACT

BACKGROUND: Training with inescapable shock (IS; uncontrollable stressor) is followed by significant decreases in rapid eye movement sleep (REM). However, controllability is important in the effects of stress. We examined the effects of escapable shock (ES; controllable stressor) on sleep and whether the central nucleus of the amygdala (CNA) plays a role in regulating these effects. METHODS: Six Wistar rats implanted with a cannula located in CNA underwent two days of ES training (20 shock presentations; 0.5 mA; 5.0 s maximum duration; 1.0 min interstimulus interval). Five days later, they were re-exposed to the shock context. RESULTS: Following shock training, REM was significantly increased in both light and dark periods. Non-REM (NREM) and total sleep (TS) duration were decreased during the light period. Similar effects on REM and NREM were observed following re-exposure to the training context alone. Microinjections of saline into CNA immediately following ES also produced similar increases in REM, whereas microinjections of muscimol (MUS; GABAA (γ-aminobutyric acid) antagonist) subsequent to ES blocked the increases in REM. CONCLUSIONS: These data, along with previous work with ES and IS, demonstrate that stressor controllability is important in determining how stress impacts sleep. Moreover, the results of the microinjection study indicate that the effects of ES on REM are regulated through the CNA.


Subject(s)
Central Amygdaloid Nucleus , Sleep, REM , Rats , Animals , Sleep, REM/physiology , Rats, Wistar , Sleep/physiology , Muscimol/pharmacology , Electroencephalography/methods
4.
Neuropsychol Rev ; 31(1): 89-102, 2021 03.
Article in English | MEDLINE | ID: mdl-32671534

ABSTRACT

A meta-analysis was conducted to review the prevalence and associated moderators of depression or depressive symptoms in patients with narcolepsy. An extensive search of the literature yielded 1104 articles and abstracts, of which 31 studies were included in the meta-analysis. Meta-analysis revealed that the overall pooled prevalence of depression or depressive symptoms in patients with narcolepsy was 32% (95% Confidence Interval, 28-36%) with high between-study heterogeneity (Q = 249.77, df = 30, p < 0.001, τ2 = 0.0087, I2 = 88%). An analysis of 13 studies with healthy control groups indicated that narcolepsy was associated with a significantly increased risk of depression or depressive symptoms (Odds Ratio 3.48, 95% Confidence Interval 2.73-4.45; Q = 41.23, df = 12, p < 0.001, τ2 = 0.0087, I2 = 70.9%). The prevalence of depression or depressive symptoms in patients with narcolepsy was significantly affected by study design (Q = 5.05, p = 0.02) and recruitment setting (Q = 5.98, p = 0.01), and was marginally affected by age group (Q = 3.44, p = 0.06). The results indicate that narcolepsy patients should be closely monitored for depression and depressive symptoms and that early screening should be considered. However, these conclusions should be tempered because of high variability between studies. The estimates across studies are very inconsistent, indicating the need for larger, multicenter studies, with stringent case definitions.


Subject(s)
Depression , Narcolepsy , Depression/epidemiology , Humans , Narcolepsy/complications , Narcolepsy/epidemiology , Prevalence
8.
Horm Behav ; 100: 20-28, 2018 04.
Article in English | MEDLINE | ID: mdl-29501756

ABSTRACT

The basolateral nucleus of the amygdala (BLA) plays a significant role in mediating individual differences in the effects of fear memory on sleep. Here, we assessed the effects of antagonizing corticotropin releasing factor receptor 1 (CRFR1) after shock training (ST) on fear-conditioned behaviors and sleep. Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at BLA. Data loggers were placed intraperitoneally to record core body temperature. The CRFR1 antagonist, antalarmin (ANT; 4.82 mM) was microinjected into BLA after shock training (ST: 20 footshocks, 0.8 mA, 0.5 s duration, 60 s interstimulus interval), and the effects on sleep, freezing and the stress response (stress-induced hyperthermia, SIH) were examined after ST and fearful context re-exposure alone at 7 days (CTX1) and 21 days (CTX2) post-ST. EEG and EMG recordings were scored for non-rapid eye movement sleep (NREM), rapid eye movement sleep (REM) and wakefulness. The rats were separated into 4 groups: Vehicle-vulnerable (Veh-Vul; n = 10), Veh-resilient (Veh-Res; n = 11), ANT-vulnerable (ANT-Vul; n = 8) and ANT-resilient (ANT-Res; n = 8) based on whether, compared to baseline, the rats showed a decrease or no change/increase in REM during the first 4 h following ST. Post-ST ANT microinjected into BLA attenuated the fear-conditioned reduction in REM in ANT-Vul rats on CTX1, but did not significantly alter REM in ANT-Res rats. However, compared to Veh treated rats, REM was reduced in ANT treated rats on CTX2. There were no group differences in freezing or SIH across conditions. Therefore, CRFR1 in BLA plays a role in mediating individual differences in sleep responses to stress and in the extinction of fear conditioned changes in sleep.


Subject(s)
Adaptation, Psychological/drug effects , Basolateral Nuclear Complex/drug effects , Body Temperature/drug effects , Fear/drug effects , Freezing Reaction, Cataleptic/drug effects , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sleep/drug effects , Animals , Basolateral Nuclear Complex/metabolism , Corticotropin-Releasing Hormone/antagonists & inhibitors , Electroencephalography , Fear/psychology , Male , Memory/drug effects , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/psychology , Rats , Rats, Wistar , Sleep/physiology , Sleep, REM/drug effects
9.
Neurobiol Learn Mem ; 137: 27-35, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27818268

ABSTRACT

Fear conditioning associated with inescapable shock training (ST) and fearful context re-exposure (CR) alone can produce significant behavioral fear, a stress response and alterations in subsequent REM sleep. These alterations may vary among animals and are mediated by the basolateral nucleus of the amygdala (BLA). Here, we used the GABAA agonist, muscimol (Mus), to inactivate BLA prior to CR and examined the effects on sleep, freezing and stress-induced hyperthermia (SIH). Wistar rats (n=28) were implanted with electrodes for recording sleep, data loggers for recording core body temperature, and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure and baseline sleep was recorded. On experimental day 1, rats received ST (20 footshocks, 0.8mA, 0.5s duration, 60s interstimulus interval). On experimental day 7, the rats received microinjections (0.5µl) into BLA of either Mus (1.0µM; n=13) or vehicle (Veh; n=15) prior to CR (CR1). On experimental day 21, the animals experienced a second CR (CR2) without Mus. For analysis, the rats were separated into 4 groups: (Veh-vulnerable (Veh-Vul; n=8), Veh-resilient (Veh-Res; n=7), Mus-vulnerable (Mus-Vul; n=7), and Mus-resilient (Mus-Res; n=6)) based on whether or not REM was decreased, compared to baseline, during the first 4h following ST. Pre-CR1 inactivation of BLA did not alter freezing or SIH, but did block the reduction in REM in the Mus-Vul group compared to the Veh-Vul group. These data indicate that BLA is an important region for mediating the effects of fearful memories on sleep.


Subject(s)
Basolateral Nuclear Complex/physiology , Fear/physiology , Memory/physiology , Sleep/physiology , Animals , Basolateral Nuclear Complex/drug effects , Body Temperature/physiology , Electroencephalography , Fear/drug effects , GABA-A Receptor Agonists/pharmacology , Memory/drug effects , Microinjections , Muscimol/pharmacology , Rats , Rats, Wistar , Sleep/drug effects , Sleep, REM/drug effects , Sleep, REM/physiology
12.
Brain Behav Immun ; 35: 125-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24055862

ABSTRACT

Intranasal application of vesicular stomatitis virus (VSV) produces a well-characterized model of viral encephalitis in mice. Within one day post-infection (PI), VSV travels to the olfactory bulb and, over the course of 7 days, it infects regions and tracts extending into the brainstem followed by clearance and recovery in most mice by PI day 14 (PI 14). Infectious diseases are commonly accompanied by excessive sleepiness; thus, sleep is considered a component of the acute phase response to infection. In this project, we studied the relationship between sleep and VSV infection using C57BL/6 (B6) and BALB/c mice. Mice were implanted with transmitters for recording EEG, activity and temperature by telemetry. After uninterrupted baseline recordings were collected for 2 days, each animal was infected intranasally with a single low dose of VSV (5×10(4) PFU). Sleep was recorded for 15 consecutive days and analyzed on PI 0, 1, 3, 5, 7, 10, and 14. Compared to baseline, amounts of non-rapid eye movement sleep (NREM) were increased in B6 mice during the dark period of PI 1-5, whereas rapid eye movement sleep (REM) was significantly reduced during the light periods of PI 0-14. In contrast, BALB/c mice showed significantly fewer changes in NREM and REM. These data demonstrate sleep architecture is differentially altered in these mouse strains and suggests that, in B6 mice, VSV can alter sleep before virus progresses into brain regions that control sleep.


Subject(s)
Behavior, Animal/physiology , Encephalitis, Viral/psychology , Rhabdoviridae Infections/psychology , Sleep/physiology , Vesicular stomatitis Indiana virus , Animals , Electroencephalography , Encephalitis, Viral/physiopathology , Encephalitis, Viral/virology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rhabdoviridae Infections/physiopathology , Rhabdoviridae Infections/virology , Sleep, REM/physiology
13.
Exp Brain Res ; 232(5): 1555-65, 2014 May.
Article in English | MEDLINE | ID: mdl-24519098

ABSTRACT

Fear conditioning [inescapable shock training (ST)] and fearful context re-exposure (CR) alone can produce significant fear indicated by increased freezing and reductions in subsequent rapid eye movement (REM) sleep. Damage to or inactivation of the basolateral nucleus of the amygdala (BLA) prior to or after ST or prior to CR generally has been found to attenuate freezing in the shock training context. However, no one has examined the impact of BLA inactivation on fear-induced changes in sleep. Here, we used the GABAA agonist, muscimol (MUS), to inactivate BLA prior to ST, the period when fear is learned, and assessed sleep after ST and sleep and freezing after two CR sessions. Wistar rats (n = 14) were implanted with electrodes for recording sleep and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure (handling) over 2 consecutive days and baseline sleep following handling was recorded. On experimental day 1, the rats were injected (0.5 µl) into BLA with either MUS (1.0 µM; n = 7) or vehicle (distilled water, n = 7) 30 min prior to ST (20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval). On experimental days 7 and 21, the animals experienced CR (CR1 and CR2, respectively) alone. Electroencephalogram and electromyogram were recorded for 8 h on each day, and the recording was scored for non-rapid eye movement sleep, REM sleep, and wakefulness. Freezing was examined during CR1 and CR2. MUS microinjections into BLA prior to ST blocked the post-training reduction in REM sleep seen in vehicle-treated rats. Furthermore, in MUS-treated rats, REM sleep after CR1 and CR2 was at baseline levels and freezing was significantly attenuated. Thus, BLA inactivation prior to ST blocks the effects of footshock stress on sleep and reduces fear memory, as indicated by the lack of freezing and changes in sleep after CR. These data indicate that BLA is an important regulator of stress-induced alterations in sleep and an important site for forming fear memories that can alter sleep.


Subject(s)
Basolateral Nuclear Complex/physiopathology , Fear/physiology , Memory/physiology , Sleep/physiology , Stress Disorders, Post-Traumatic/pathology , Analysis of Variance , Animals , Basolateral Nuclear Complex/drug effects , Conditioning, Classical/physiology , Disease Models, Animal , Electroencephalography , Electromyography , GABA-A Receptor Agonists/pharmacology , Memory/drug effects , Microinjections , Muscimol/pharmacology , Rats , Rats, Wistar , Sleep/drug effects
14.
Behav Brain Res ; 463: 114913, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38367773

ABSTRACT

To assess the stability of electroencephalographic (EEG) spectral features across overnight polysomnography (PSG) and daytime multiple sleep latency tests (MSLTs) in chronic insomniacs (CIs) and normal controls (NCs). A total of 20 NCs and 22 CIs underwent standard PSG and MSLTs. Spectral analyses were performed on EEG data from PSG and MSLTs and absolute and relative power in central, frontal and occipital channels were obtained for wake (W) and non-rapid eye movement sleep stage 1 and 2 (N1, N2). Intraclass correlation coefficients (ICCs) were used to assess the stability of EEG spectral power across PSG and MSLTs for W, N1 and N2. The absolute power of all frequency bands except delta exhibited high stability across PSG and MSLTs in both NCs and CIs (ICCs ranged from 0.430 to 0.978). Although delta absolute power was stable in NCs during N1 and N2 stages (ICCs ranged from 0.571 to 0.835), it tended to be less stable in CIs during W and sleep stages (ICCs ranged from 0.042 to 0.807). We also observed lower stability of relative power compared to absolute power though the majority of relative power outcomes maintained high stability in both groups (ICCs in relative power ranged from 0.044 to 0.962). Most EEG spectral bandwidths across PSG and MSLT in W, N1 and N2 show high stability in good sleepers and chronic insomniacs. EEG signals from either an overnight PSG or a daytime MSLT may be useful for reliably exploring EEG spectral features during wakefulness or sleep.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Polysomnography , Sleep Latency , Sleep , Sleep Stages , Electroencephalography
15.
Sci Prog ; 107(2): 368504241253692, 2024.
Article in English | MEDLINE | ID: mdl-38780474

ABSTRACT

The brain regulates every physiological process in the body, including metabolism. Studies investigating brain metabolism have shown that stress can alter major metabolic processes, and that these processes can vary between regions. However, no study has investigated how metabolic pathways may be altered by stressor perception, or whether stress-responsive brain regions can also regulate metabolism. The basolateral amygdala (BLA), a region important for stress and fear, has reciprocal connections to regions responsible for metabolic regulation. In this study, we investigated how BLA influences regional metabolic profiles within the hippocampus (HPC) and medial prefrontal cortex (mPFC), regions involved in regulating the stress response and stress perception, using optogenetics in male C57BL/6 mice during footshock presentation in a yoked shuttlebox paradigm based on controllable (ES) and uncontrollable (IS) stress. RNA extracted from HPC and mPFC were loaded into NanoString® Mouse Neuroinflammation Panels, which also provides a broad view of metabolic processes, for compilation of gene expression profiles. Results showed differential regulation of carbohydrate and lipid metabolism, and insulin signaling gene expression pathways in HPC and mPFC following ES and IS, and that these differences were altered in response to optogenetic excitation or inhibition of the BLA. These findings demonstrate for the first time that individual brain regions can utilize metabolites in a way that are unique to their needs and function in response to a stressor, and that vary based on stressor controllability and influence by BLA.


Subject(s)
Basolateral Nuclear Complex , Hippocampus , Mice, Inbred C57BL , Optogenetics , Prefrontal Cortex , Stress, Psychological , Animals , Male , Basolateral Nuclear Complex/metabolism , Mice , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Prefrontal Cortex/metabolism , Hippocampus/metabolism , Brain/metabolism , Lipid Metabolism
16.
Sleep ; 47(1)2024 01 11.
Article in English | MEDLINE | ID: mdl-37967212

ABSTRACT

STUDY OBJECTIVES: This study explores polysomnographic and multiple sleep latency test (MSLT) differences between myotonic dystrophy type 1/type 2 (DM1/DM2) patients and controls. METHODS: An electronic literature search was conducted in MEDLINE, EMBASE, All EBM databases, and Web of Science from inception to Aug 2023. RESULTS: Meta-analyses revealed significant reductions in sleep efficiency, N2 percentage, mean SpO2, and MSLT measured mean sleep latency, and increases in N3 sleep, wake time after sleep onset, apnea hypopnea index, and periodic limb movement index in DM1 patients compared with controls. However, any differences of polysomnographic sleep change between DM2 patients and controls could not be established due to limited available studies. CONCLUSIONS: Multiple significant polysomnographic abnormalities are present in DM1. More case-control studies evaluating polysomnographic changes in DM2 compared with controls are needed.


Subject(s)
Myotonic Dystrophy , Sleep, Slow-Wave , Humans , Case-Control Studies , Polysomnography , Sleep
17.
Life Sci Space Res (Amst) ; 41: 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38670655

ABSTRACT

Future NASA missions will require astronauts to travel farther and spend longer durations in space than ever before. This will also expose astronauts to longer periods of several physical and psychological challenges, including exposure to space radiation (SR) and periods of social isolation (SI), which could have unknown negative effects on physical and mental health. Each also has the potential to negatively impact sleep which can reduce the ability to cope with stressful experiences and lead to sensorimotor, neurocognitive, and physical deficits. The effects of SI and SR on gross motor performance has been shown to vary, and depend on, individual differences in stress resilience and vulnerability based on our established animal model in which stress produces different effects on sleep. In this study, the impact that SI and SR, either alone or together, had on fine motor skill performance (bilateral tactile adhesive removal task (BTAR)) was assessed in male rats. We also examined emotional, exploratory, and other off-task behavioral responses during testing and assessed whether sensorimotor performance and emotion varied with individual differences in resilience and vulnerability. BTAR task performance was differentially impacted by SI and SR, and were further influenced by the stress resilience/vulnerability phenotype of the rats. These findings further demonstrate that identifying individual responses to stressors that can impact sensorimotor ability and behavior necessary to perform mission-related tasks will be of particular importance for astronauts and future missions. Should similar effects occur in humans, there may be considerable inter-individual variability in the impact that inflight stressors have on astronauts and their ability to perform mission-related tasks.


Subject(s)
Behavior, Animal , Cosmic Radiation , Motor Skills , Social Isolation , Animals , Cosmic Radiation/adverse effects , Male , Rats , Motor Skills/radiation effects , Behavior, Animal/radiation effects , Stress, Psychological , Space Flight
18.
Life (Basel) ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792656

ABSTRACT

The proposed Mars missions will expose astronauts to long durations of social isolation (SI) and space radiation (SR). These stressors have been shown to alter the brain's macrostructure and microenvironment, including the blood-brain barrier (BBB). Breakdown of the BBB is linked to impaired executive functions and physical deficits, including sensorimotor and neurocognitive impairments. However, the precise mechanisms mediating these effects remain unknown. Additionally, the synergistic effects of combined exposure to SI and SR on the structural integrity of the BBB and brain remain unknown. We assessed the BBB integrity and morphology in the brains of male rats exposed to ground-based analogs of SI and SR. The rats exposed to SR had enlarged lateral ventricles and increased BBB damage associated with a loss of astrocytes and an increased number of leaky vessels. Many deficits observed in SR-treated animals were attenuated by dual exposure to SI (DFS). SI alone did not show BBB damage but did show differences in astrocyte morphology compared to the Controls. Thus, determining how single and combined inflight stressors modulate CNS structural integrity is crucial to fully understand the multiple pathways that could impact astronaut performance and health, including the alterations to the CNS structures and cell viability observed in this study.

19.
Signal Transduct Target Ther ; 8(1): 309, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37644009

ABSTRACT

Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/therapy , Clinical Relevance , Depression , Epigenesis, Genetic/genetics , DNA Methylation/genetics
20.
J Clin Sleep Med ; 19(2): 253-265, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36117421

ABSTRACT

STUDY OBJECTIVES: This study aims to explore the polysomnographically measured sleep differences between patients with multiple sclerosis (MS) and healthy control patients. METHODS: An electronic literature search was conducted in EMBASE, MEDLINE, all EBM databases, CINAHL, and PsycINFO from inception to March 2022. A random-effects model was applied to explore the pooled effect sizes of polysomnographic differences between patients with MS and control patients. RESULTS: Thirteen studies were identified for meta-analysis. The meta-analyses revealed significant reductions in stage N2 sleep and sleep efficiency and increases in wake time after sleep onset, the periodic limb movement index, and the periodic limb movement arousal index in patients with MS compared with control patients. Meta-regression analyses showed that some of the heterogeneity was explained by age and daytime sleepiness of patients with MS. CONCLUSIONS: Our study showed that polysomnographic abnormalities are present in MS. Our findings also underscore the need for a comprehensive polysomnographic assessment of sleep changes in patients with MS. Furthermore, the effects of age and daytime sleepiness in patients with MS on sleep changes should also be carefully considered and closely monitored in the management of MS. CITATION: Zhang Y, Ren R, Yang L, et al. Sleep in multiple sclerosis: a systematic review and meta-analysis of polysomnographic findings. J Clin Sleep Med. 2023;19(2):253-265.


Subject(s)
Disorders of Excessive Somnolence , Multiple Sclerosis , Sleep Wake Disorders , Humans , Polysomnography , Multiple Sclerosis/complications , Sleep , Sleep Stages , Sleep Wake Disorders/complications
SELECTION OF CITATIONS
SEARCH DETAIL