Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 597(7877): 493-497, 2021 09.
Article in English | MEDLINE | ID: mdl-34552252

ABSTRACT

The recent progress in nanotechnology1,2 and single-molecule spectroscopy3-5 paves the way for emergent cost-effective organic quantum optical technologies with potential applications in useful devices operating at ambient conditions. We harness a π-conjugated ladder-type polymer strongly coupled to a microcavity forming hybrid light-matter states, so-called exciton-polaritons, to create exciton-polariton condensates with quantum fluid properties. Obeying Bose statistics, exciton-polaritons exhibit an extreme nonlinearity when undergoing bosonic stimulation6, which we have managed to trigger at the single-photon level, thereby providing an efficient way for all-optical ultrafast control over the macroscopic condensate wavefunction. Here, we utilize stable excitons dressed with high-energy molecular vibrations, allowing for single-photon nonlinear operation at ambient conditions. This opens new horizons for practical implementations like sub-picosecond switching, amplification and all-optical logic at the fundamental quantum limit.

2.
Phys Rev Lett ; 131(18): 186902, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977614

ABSTRACT

The development of high-speed, all-optical polariton logic devices underlies emerging unconventional computing technologies and relies on advancing techniques to reversibly manipulate the spatial extent and energy of polartion condensates. We investigate active spatial control of polariton condensates independent of the polariton, gain-inducing excitation profile. This is achieved by introducing an extra intracavity semiconductor layer, nonresonant to the cavity mode. Partial saturation of the optical absorption in the uncoupled layer enables the ultrafast modulation of the effective refractive index and, through excited-state absorption, the polariton dissipation. Utilizing an intricate interplay of these mechanisms, we demonstrate control over the spatial profile, density, and energy of a polariton condensate at room temperature.

4.
Nat Commun ; 15(1): 5362, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918407

ABSTRACT

Today, almost all information processing is performed using electronic logic circuits operating at several gigahertz frequency. All-optical logic holds the promise to allow for up to three orders of magnitude higher speed. Whereas essential all-optical transistor functionalities were demonstrated across a range of platforms, utilising them to implement a complete Boolean logic gate set and in particular negation, i.e. switching off an optical signal with another, weaker, optical signal, poses a major challenge. Here, we realize a cascadable NOT gate by introducing the concept of non-ground-state polariton amplification in organic semiconductor microcavities under non-resonant optical excitation. We unravel the importance of vibron-mediated stimulated scattering in room temperature operation of the inverter. Moreover, we extend the concept to a multi-input universal NOR logic gate, where in the presence of any of the input signals non-ground-state amplification supersedes spontaneous ground-state condensation, resulting in a NOR gate with ~1 ps switching time. The realisation of an ultrafast universal logic gate constitutes an essential step for more complex optical circuitry that could boost information processing applications.

5.
Sci Rep ; 11(1): 20879, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686707

ABSTRACT

We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO2 and a Nb2O5 film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs. We observe, however, that the roughness of the hybrid mirror-caused by limited adhesion between the silver and the dielectric pair-apparently prevents complete collapse of the population to the ground polariton state above the condensation threshold.

6.
ACS Appl Mater Interfaces ; 11(1): 1040-1048, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30540432

ABSTRACT

Inorganic cesium lead halide perovskite nanowires, generating laser emission in the broad spectral range at room temperature and low threshold, have become powerful tools for the cutting-edge applications in the optoelectronics and nanophotonics. However, to achieve high-quality nanowires with the outstanding optical properties, it was necessary to employ long-lasting and costly methods of their synthesis, as well as postsynthetic separation and transfer procedures that are not convenient for large-scale production. Here we report a novel approach to fabricate high-quality CsPbBr3 nanolasers obtained by rapid precipitation from dimethyl sulfoxide solution sprayed onto hydrophobic substrates at ambient conditions. The synthesis technique allows producing the well-separated nanowires with a broad size distribution of 2-50 µm in 5-7 min, being the fastest method to the best of our knowledge. The formation of nanowires occurs via ligand-assisted reprecipitation triggered by intermolecular proton transfer from (CH3)2CHOH to H2O in the presence of a minor amount of water. The XRD patterns confirm an orthorhombic crystal structure of the as-grown CsPbBr3 single nanowires. Scanning electron microscopy images reveal their regular shape and truncated pyramidal end facets, while high-resolution transmission electron microscopy ones demonstrate their single-crystal structure. The lifetime of excitonic emission of the nanowires is found to be 7 ns, when the samples are excited with energy below the lasing threshold, manifesting the low concentration of defect states. The measured nanolasers of different lengths exhibit pronounced stimulated emission above 13 µJ cm-2 excitation threshold with quality factor Q = 1017-6166. Their high performance is assumed to be related to their monocrystalline structure, low concentration of defect states, and improved end facet reflectivity.

SELECTION OF CITATIONS
SEARCH DETAIL