Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Water Sci Technol ; 85(5): 1538-1548, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35290230

ABSTRACT

Methane is a powerful greenhouse gas and a source of energy. Recovering this gas means lower greenhouse gas emission and potential reduction of energetic costs. The lack of full-scale results, the use of different methodologies to detect dissolved methane (d-CH4) and the fact that no process to remove d-CH4 from anaerobic effluents is energetically or economically viable at full-scale urged a different approach to the problem. To avoid methodological interference and facilitate comparison of results the Standard Test Method number D8028-17 published by ASTM International can be used to determine d-CH4. The use of real anaerobic reactor effluent also helps results to be compared. In this study, 80 samples from a full-scale anaerobic reactor showed an average concentration of dissolved methane of 14.9 mg·L-1, meaning an emission of 229 kg of CO2 eq·h-1 and an average of 113.5 kW wasted. Using spray nozzles, an alternative to the methods being researched, the average methane recovery was 11.5 mg·L-1 of CH4, an efficiency of 81.6%, meaning 177 kg of CO2 eq·h-1 emissions avoided and 87.9 kW of recoverable energy.


Subject(s)
Methane , Sewage , Anaerobiosis , Bioreactors , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL