Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Affiliation country
Publication year range
1.
Hemoglobin ; 40(1): 20-4, 2016.
Article in English | MEDLINE | ID: mdl-26372288

ABSTRACT

The spectrum of ß-thalassemia (ß-thal) mutations was investigated for the first time in a cohort of 33 unrelated patients from the Brazilian Amazon attending the Center for Hemotherapy and Hematology of the Pará Foundation (HEMOPA), in Belém, the state capital of Pará, Northern Brazil. Identification of the ß-thal mutations was made by direct genomic sequencing of the ß-globin gene. Mutations were identified in all patients, corresponding to a spectrum of 10 different point mutations and a total of 37 alleles studied. HBB: c.92 + 5G > A [IVS-I-5 (G > A)], was the most common ß-thal mutation, followed by HBB: c.118C > T [codon 39 (C > T)], HBB: c.-138C > T [-88 (C>T)], HBB: c.92 + 1G > A [IVS-I-1 (G > A)] and HBB: c.92 + 6T > C [IVS-I-6 (T > C)] mutations. These five mutations (four Mediterranean origin and one African origin) accounted for 86.5% of the ß-thal alleles. The profile of ß-thal mutations found in northern Brazil is different from those described in other regions of the country. In the southeast and south, the nonsense mutation HBB: c.118C > T is the most prevalent, followed by HBB: c.93-21G > A [IVS-I-110 (G > A)], whereas in the northeast, HBB: c.92 + 6T > C has been identified as the most common mutation, followed by HBB: c.92 + 1G > A. This heterogeneous geographical distribution is certainly related to the ancestry of Brazilian populations because they have similar genetic backgrounds (European, African and Amerindian), although with slightly different admixture proportions. Furthermore, the European contribution in the southeast and south was largely made up of immigrants of other nationalities, such as Italian and Spanish, in addition to Portuguese.


Subject(s)
Point Mutation , beta-Globins/genetics , beta-Thalassemia/epidemiology , beta-Thalassemia/genetics , Adult , Brazil/epidemiology , Cohort Studies , Female , Gene Frequency , Humans , Male , Young Adult
2.
Hemoglobin ; 40(4): 228-30, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27250692

ABSTRACT

Hb E-Saskatoon [ß22(B4)Glu→Lys, HBB: c.67G > A] is a rare, nonpathological ß-globin variant that was first described in a Canadian woman of Scottish and Dutch ancestry and has since then been detected in several populations. The aim of the present study was to identify the origin of Hb E-Saskatoon in Brazil using ß-globin haplotypes and genetic ancestry in carriers of this hemoglobin (Hb) variant. Blood samples were investigated by isoelectric focusing (IEF) and high performance liquid chromatography (HPLC) using commercial kits. Hb E-Saskatoon was confirmed by amplification of the HBB gene, followed by sequence analysis. Haplotypes of the ß-globin gene were determined by polymerase chain reaction (PCR), followed by digestion with specific restriction enzymes. Individual ancestry was estimated with 48 biallelic insertion/deletions using three 16-plex PCR amplifications. The IEF pattern was similar to Hbs C (HBB: c.19G > A) and Hb E (HBB: c.79G > A) [isoelectric point (pI): 7.59-7.65], and HPLC results showed an elution in the Hb S (HBB: c.20A > T) window [retention time (RT): 4.26-4.38]. DNA sequencing of the amplified ß-globin gene showed a mutation at codon 22 (GAA>AAA) corresponding to Hb E-Saskatoon. A total of 11 cases of this variant were identified. In nine unrelated individuals, Hb E-Saskatoon was in linkage disequilibrium with haplotype 2 [+ - - - -]. All subjects showed a high degree of European contribution (mean = 0.85). Hb E-Saskatoon occurred on the ß-globin gene of haplotype 2 in all Brazilian carriers. These findings suggest a different genetic origin for this Hb variant from that previously described.


Subject(s)
Gene Frequency , Hemoglobin E/genetics , Molecular Epidemiology/methods , Brazil , Genetic Variation , Haplotypes , Hemoglobinopathies/genetics , Hemoglobins, Abnormal/genetics
3.
An Acad Bras Cienc ; 87(1): 447-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25651157

ABSTRACT

The higher proportion of smokers among Black people in Brazil has been attributed to socioeconomic disparities, but genetic factors could also contribute for this finding. This study aimed at investigating associations between smoking status with genetically defined ethnic ancestry and socioeconomic features in Brazilians. Blood samples were collected from 448 volunteers (66.7% male; age: 37.1 ± 11.4 years) classified as current smokers (CS: 60.9%), former smokers (FS: 8.9%) and never smokers (NS: 30.1%). Individual interethnic admixtures were determined using a 48 insertion-deletion polymorphisms ancestry-informative-marker panel. CS showed a lower amount of European ancestry than NS (0.837 ± 0.243 X 0.883 ± 0.194, p ≤ 0.05) and FS (0.837 ± 0.243 X 0.864 ± 0.230, p ≤ 0.05), and a higher proportion of African Sub-Saharan ancestry than FS (0.128 ± 0.222 X 0.07 ± 0.174, p ≤ 0.05) and NS (0.128 ± 0.222 X 0.085 ± 0.178, p ≤ 0.05). NS reported a higher number of years in school than CS (11.2 ± 3.7 X 8.9 ± 3.8, p ≤ 0.001). CS were less common in economic Class A (30%) and more common in Class B (56.8%). In multivariate analysis, only lower number of school years and lower economic class were associated with higher chances for CS. The use of genetic molecular markers for characterizing ethnic background confirmed that socioeconomic disparities are the main determinants of higher smoking rates among Blacks in Brazil.


Subject(s)
Cytochrome P-450 CYP2A6/genetics , Polymorphism, Genetic/genetics , Smoking/ethnology , Adult , American Indian or Alaska Native , Black People , Brazil/ethnology , Female , Genetic Markers/genetics , Humans , Male , Risk Factors , Smoking/genetics , Socioeconomic Factors , White People
4.
Cytokine ; 65(1): 42-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24139871

ABSTRACT

OBJECTIVE: To investigate the influence of IL6, IL12B and VDR single nucleotide polymorphisms (SNPs) in uncomplicated Plasmodium vivax infection symptoms intensity, parasitemia and gametocytemia levels in a Brazilian Amazonian population. METHODS: A total of 167 malaria patients infected by P. vivax have parasitemia and gametocytemia levels estimated before treatment. Fourteen clinical symptoms were evaluated and included in a principal component analysis to derive a clinical symptom index. Patients were genotyped for IL6-174C>G, IL12B 735T>C, 458A>G, 159A>C, and VDR FokI, TaqI, BsmI SNPs by Taqman 5' nuclease assays. A General Linear Model analysis of covariance with age, gender, exposure period and infection history and genetic ancestry was performed to investigate the association of genotypes with parasitemia and gametocytemia levels and with a clinical symptom index. RESULTS: Higher parasitemia levels were observed in IL6-174C carriers (p=0.02) whereas IL12B CGT haplotype carriers presented lower parasitemia levels (p=0.008). VDR TaqIC/BsmIA haplotype carriers showed higher gametocyte levels than non-carriers (p=0.013). Based on the clinical index values the IL6-174C>G polymorphism was associated with malaria severity. The IL6-174C carriers presented a more severe clinical index when compared to GG homozygotes (p=0.001). CONCLUSION: The present study suggests that IL6, IL12 and VDR influence severity, parasitemia and gametocytemia clearance in P. vivax infections, and highlights their potential role in malaria immune response in an Amazonian population.


Subject(s)
Interleukin-12 Subunit p40/genetics , Interleukin-6/genetics , Malaria, Vivax/genetics , Parasitemia/genetics , Plasmodium vivax , Receptors, Calcitriol/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Child , Female , Genotype , Humans , Interleukin-12 Subunit p40/immunology , Interleukin-6/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/immunology , Male , Middle Aged , Parasitemia/parasitology , Polymorphism, Single Nucleotide , Receptors, Calcitriol/immunology , Young Adult
5.
Genes (Basel) ; 14(2)2023 02 10.
Article in English | MEDLINE | ID: mdl-36833388

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for the vast majority of cases of lung neoplasms. It is formed in multiple stages, with interactions between environmental risk factors and individual genetic susceptibility and with genes involved in the immune and inflammatory response paths, cell or genome stability, and metabolism, among others. Our objective was to evaluate the association between five genetic variants (IL-1A, NFKB1, PAR1, TP53, and UCP2) and the development of NSCLC in the Brazilian Amazon. The study included 263 individuals with and without lung cancer. The samples were analyzed for the genetic variants of NFKB1 (rs28362491), PAR1 (rs11267092), TP53 (rs17878362), IL-1A (rs3783553), and UCP2 (INDEL 45-bp), which were genotyped in PCR, followed by an analysis of the fragments, in which we applied a previously developed set of informative ancestral markers. We used a logistic regression model to identify differences in the allele and the genotypic frequencies among individuals and their association with NSCLC. The variables of gender, age, and smoking were controlled in the multivariate analysis to prevent confusion by association. The individuals that were homozygous for the Del/Del of polymorphism NFKB1 (rs28362491) (p = 0.018; OR = 0.332) demonstrate a significant association with NSCLC, which was similar to that observed in the variants of PAR1 (rs11267092) (p = 0.023; OR = 0.471) and TP53 (rs17878362) (p = 0.041; OR = 0.510). Moreover, the individuals with the Ins/Ins genotype of polymorphism IL-1A (rs3783553) demonstrated greater risk for NSCLC (p = 0.033; OR = 2.002), as did the volunteers with the Del/Del of UCP2 (INDEL 45-bp) (p = 0.031; OR = 2.031). The five polymorphisms investigated can contribute towards NSCLC susceptibility in the population of the Brazilian Amazon.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , NF-kappa B p50 Subunit , Receptor, PAR-1 , Tumor Suppressor Protein p53 , Uncoupling Protein 2 , Humans , Brazil/epidemiology , NF-kappa B p50 Subunit/genetics , Polymorphism, Genetic , Receptor, PAR-1/genetics , Tumor Suppressor Protein p53/genetics
6.
Malar J ; 11: 409, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23217179

ABSTRACT

BACKGROUND: Malaria is among the most prevalent parasitic diseases worldwide. In Brazil, malaria is concentrated in the northern region, where Plasmodium vivax accounts for 85% disease incidence. The role of genetic factors in host immune system conferring resistance/susceptibility against P. vivax infections is still poorly understood. METHODS: The present study investigates the influence of polymorphisms in 18 genes related to the immune system in patients with malaria caused by P. vivax. A total of 263 healthy individuals (control group) and 216 individuals infected by P. vivax (malaria group) were genotyped for 33 single nucleotide polymorphisms (SNPs) in IL1B, IL2, IL4, IL4R, IL6, IL8, IL10, IL12A, IL12B, IL12RB1, SP110, TNF, TNFRSF1A, IFNG, IFNGR1, VDR, PTPN22 and P2X7 genes. All subjects were genotyped with 48 ancestry informative insertion-deletion polymorphisms to determine the proportion of African, European and Amerindian ancestry. Only 13 SNPs in 10 genes with differences lower than 20% between cases and controls in a Poisson Regression model with age as covariate were further investigated with a structured population association test. RESULTS: The IL1B gene -5839C > T and IL4R 1902A > G polymorphisms and IL12RB1 -1094A/-641C and TNF -1031 T/-863A/-857 T/-308 G/-238 G haplotypes were associated with malaria susceptibility after population structure correction (p = 0.04, p = 0.02, p = 0.01 and p = 0.01, respectively). CONCLUSION: Plasmodium vivax malaria pathophysiology is still poorly understood. The present findings reinforce and increase our understanding about the role of the immune system in malaria susceptibility.


Subject(s)
Interleukin-1beta/genetics , Interleukin-4 Receptor alpha Subunit/genetics , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Receptors, Interleukin-12/genetics , Tumor Necrosis Factor-alpha/genetics , Adolescent , Adult , Brazil/epidemiology , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Malaria, Vivax/epidemiology , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
7.
Genes (Basel) ; 13(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35205412

ABSTRACT

Autism spectrum disorder is a neurodevelopmental disorder, affecting one in 160 children worldwide. The causes of autism are still poorly understood, but research shows the relevance of genetic factors in its pathophysiology, including the CHD8, SCN2A, FOXP1 and SYNGAP1 genes. Information about the genetic influence on various diseases, including autism, in the Amerindian population from Amazon, is still scarce. We investigated 35 variants of the CHD8, SCN2A, FOXP1, and SYNGAP1 gene in Amazonian Amerindians in comparison with publicly available population frequencies from the 1000 Genomes Project database. Our study identified 16 variants in the Amerindian population of the Amazon with frequencies significantly different from the other populations. Among them, the SCN2A (rs17183814, rs75109281, and rs150453735), FOXP1 (rs56850311 and rs939845), and SYNGAP1 (rs9394145 and rs115441992) variants presented higher frequency than all other populations analyzed. In addition, nine variants were found with lower frequency among the Amerindians: CHD8 (rs35057134 and rs10467770), SCN2A (rs3769951, rs2304014, rs1838846, and rs7593568), FOXP1 (rs112773801 and rs56850311), and SYNGAP1 (rs453590). These data show the unique genetic profile of the indigenous population of the Brazilian Amazon. Knowledge of these variants can help to understand the pathophysiology and diagnosis of autism among Amerindians, Brazilians, and in admixed populations that have contributions from this ethnic group.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Child , Exome , Forkhead Transcription Factors/genetics , Gene Frequency , Humans , Repressor Proteins/genetics , Transcription Factors/genetics
8.
Genes (Basel) ; 13(3)2022 03 11.
Article in English | MEDLINE | ID: mdl-35328047

ABSTRACT

Lung cancer is one of the most frequent neoplasms in the world. Because it is a complex disease, its formation occurs in several stages, stemming from interactions between environmental risk factors, such as smoking, and individual genetic susceptibility. Our objective was to investigate associations between a UGT1A1 gene polymorphism (rs8175347) and lung cancer risk in an Amazonian population. This is a pilot study, case-controlled study, which included 276 individuals with cancer and without cancer. The samples were analyzed for polymorphisms of the UGT1A1 gene (rs8175347) and genotyped in PCR, followed by fragment analysis in which we applied a previously developed set of informative ancestral markers. We used logistic regression to identify differences in allelic and genotypic frequencies between individuals. Individuals with the TA7 allele have an increased chance of developing lung adenocarcinoma (p = 0.035; OR: 2.57), as well as those with related genotypes of reduced or low enzymatic activity: TA6/7, TA5/7, and TA7/7 (p = 0.048; OR: 8.41). Individuals with homozygous TA7/7 have an increased chance of developing squamous cell carcinoma of the lung (p = 0.015; OR: 4.08). Polymorphism in the UGT1A1 gene (rs8175347) may contribute as a risk factor for adenocarcinoma and lung squamous cell carcinoma in the population of the Amazon region.


Subject(s)
Carcinoma, Squamous Cell , Glucuronosyltransferase , Lung Neoplasms , Glucuronosyltransferase/genetics , Humans , Lung Neoplasms/genetics , Pilot Projects , Polymorphism, Genetic , Risk Factors
9.
Genes (Basel) ; 14(1)2022 12 24.
Article in English | MEDLINE | ID: mdl-36672804

ABSTRACT

Gastric cancer (GC) is a multifactorial, complex, and aggressive disease with a prevalence of one million new cases and high global mortality. Factors such as genetic, epigenetic, and environmental changes contribute to the onset and progression of the disease. Identification of INDELs in miRNA and its target sites in current studies showed an important role in the development of cancer. In GC, miRNAs act as oncogenes or tumor suppressors, favoring important cancer pathways, such as cell proliferation and migration. This work aims to investigate INDELs in the coding region of miRNAs (hsa-miR-302c, hsa-miR-548AJ-2, hsa-miR-4274, hsa-miR-630, hsa-miR-516B-2, hsa-miR-4463, hsa-miR-3945, hsa-miR-548H_4, hsa-miR-920, has-mir-3171, and hsa-miR-3652) that may be associated with susceptibility and clinical variants of gastric cancer. For this study, 301 patients with GC and 145 individuals from the control group were selected from an admixed population in the Brazilian Amazon. The results showed the hsa-miR-4463, hsa-miR-3945, hsa-miR-548H_4, hsa-miR-920 and hsa-miR-3652 variants were associated with gastric cancer susceptibility. The hsa-miR-4463 was significantly associated with clinical features of GC such as diffuse gastric tumor histological type, "non-cardia" localization region, and early onset. Our findings indicated that INDELs could be potentially functional genetic variants for gastric cancer risk.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes , Biomarkers, Tumor/genetics
10.
Transl Med Commun ; 7(1): 10, 2022.
Article in English | MEDLINE | ID: mdl-35571459

ABSTRACT

Background: Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis and represents an important global public health issue. Single-nucleotide polymorphisms and INDELs are common genetic variations that can be located in genes associated with immune response and, therefore, they may have direct implications over the phenotype of susceptibility to infections like tuberculosis. This study aimed to investigate the association between the 17 genetic polymorphisms and susceptibility to tuberculosis in a Brazilian population. Methods: This case-control study enrolled 283 individuals with active tuberculosis and 145 health care workers. Four INDELs and 13 single nucleotide polymorphisms and were genotyped using Multiplex PCR method and TaqMan SNP Genotyping Assays. Group comparisons for categorical variables were performed using the chi-squared test, whilst the t-Student test was used to analyze the continuous variables. Multiple logistic regression analyses were performed to estimate the odds ratio (OR) with 95% confidence intervals (CI). Deviation from Hardy-Weinberg equilibrium was assessed using chi-squared tests with Bonferroni correction. The results were analyzed comparing the genotypic distributions adopting the dominant model and the estimated values ​​of p corrected for multiple tests through FDR (False Discovery Rate) test. Results: The HWE test confirmed that the genotypic frequencies for polymorphisms were balanced. The frequency of Del allele was 73 and 75%, in cases and controls respectively. Frequency of Del allele was significantly higher in the control group than TB group. The homozygous Del/Del genotype was present in 51.6% of cases and 58.6% of controls. The rare Ins/Ins genotype was present in only 7.6% of controls and 6% of cases. The ACE Del/Del genotype was significantly higher in the cases than in controls revealing significant protection for TB in the domain model (OR = 0.465; p < 0.005). Conclusions: The Del/Del genotype of the rs4646994 in ACE gene was associated with susceptibility to tuberculosis. The identification of genetic variants responsible for susceptibility to tuberculosis will allow the development of new diagnostic tools for tuberculosis infection. These studies will help improve control and the future eradication of this disease.

11.
Genes (Basel) ; 13(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35456416

ABSTRACT

In Brazil, Acute lymphoid leukemia (ALL) is the leading cause of cancer deaths in children and adolescents. Treatment toxicity is one of the reasons for stopping chemotherapy. Amerindian genomic ancestry is an important factor for this event due to fluctuations in frequencies of genetic variants, as in the NUDT15 and SLC22A1 genes, which make up the pharmacokinetic and pharmacodynamic pathways of chemotherapy. This study aimed to investigate possible associations between NUDT15 (rs1272632214) and SLC22A1 (rs202220802) gene polymorphism and genomic ancestry as a risk of treatment toxicities in patients with childhood ALL in the Amazon region of Brazil. The studied population consisted of 51 patients with a recent diagnosis of ALL when experiencing induction therapy relative to the BFM 2009 protocol. Our results evidenced a significant association of risk of severe infectious toxicity for the variant of the SLC22A1 gene (OR: 3.18, p = 0.031). Genetic ancestry analyses demonstrated that patients who had a high contribution of African ancestry had a significant protective effect for the development of toxicity (OR: 0.174; p = 0.010), possibly due to risk effects of the Amerindian contribution. Our results indicate that mixed populations with a high degree of African ancestry have a lower risk of developing general toxicity during induction therapy for ALL. In addition, individuals with the SLC22A1 variant have a higher risk of developing severe infectious toxicity while undergoing the same therapy.


Subject(s)
Organic Cation Transporter 1 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Black People , Child , Humans , Organic Cation Transporter 1/genetics , Polymorphism, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Pyrophosphatases/genetics
12.
J Pers Med ; 12(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35743641

ABSTRACT

A number of genomic variants related to native American ancestry may be associated with an increased risk of developing Acute Lymphoblastic Leukemia (ALL), which means that Latin American and hispanic populations from the New World may be relatively susceptible to this disease. However, there has not yet been any comprehensive investigation of the variants associated with susceptibility to ALL in traditional Amerindian populations from Brazilian Amazonia. We investigated the exomes of the 18 principal genes associated with susceptibility to ALL in samples of 64 Amerindians from this region, including cancer-free individuals and patients with ALL. We compared the findings with the data on populations representing five continents available in the 1000 Genomes database. The variation in the allele frequencies found between the different groups was evaluated using Fisher's exact test. The analyses of the exomes of the Brazilian Amerindians identified 125 variants, seven of which were new. The comparison of the allele frequencies between the two Amerindian groups analyzed in the present study (ALL patients vs. cancer-free individuals) identified six variants (rs11515, rs2765997, rs1053454, rs8068981, rs3764342, and rs2304465) that may be associated with susceptibility to ALL. These findings contribute to the identification of genetic variants that represent a potential risk for ALL in Amazonian Amerindian populations and might favor precision oncology measures.

13.
Am J Hum Genet ; 82(3): 583-92, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18313026

ABSTRACT

It is well accepted that the Americas were the last continents reached by modern humans, most likely through Beringia. However, the precise time and mode of the colonization of the New World remain hotly disputed issues. Native American populations exhibit almost exclusively five mitochondrial DNA (mtDNA) haplogroups (A-D and X). Haplogroups A-D are also frequent in Asia, suggesting a northeastern Asian origin of these lineages. However, the differential pattern of distribution and frequency of haplogroup X led some to suggest that it may represent an independent migration to the Americas. Here we show, by using 86 complete mitochondrial genomes, that all Native American haplogroups, including haplogroup X, were part of a single founding population, thereby refuting multiple-migration models. A detailed demographic history of the mtDNA sequences estimated with a Bayesian coalescent method indicates a complex model for the peopling of the Americas, in which the initial differentiation from Asian populations ended with a moderate bottleneck in Beringia during the last glacial maximum (LGM), around approximately 23,000 to approximately 19,000 years ago. Toward the end of the LGM, a strong population expansion started approximately 18,000 and finished approximately 15,000 years ago. These results support a pre-Clovis occupation of the New World, suggesting a rapid settlement of the continent along a Pacific coastal route.


Subject(s)
American Indian or Alaska Native/genetics , DNA, Mitochondrial/genetics , Emigration and Immigration , Phylogeny , Americas , Genomics , Haplotypes , Humans , Sequence Analysis, DNA
14.
Am J Phys Anthropol ; 145(3): 371-81, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21520008

ABSTRACT

Information on one Ecuadorian and three Peruvian Amerindian populations for 11 autosomal short tandem repeat (STR) loci is presented and incorporated in analyses that includes 26 other Native groups spread all over South America. Although in comparison with other studies we used a reduced number of markers, the number of populations included in our analyses is currently unmatched by any genome-wide dataset. The genetic polymorphisms indicate a clear division of the populations into three broad geographical areas: Andes, Amazonia, and the Southeast, which includes the Chaco and southern Brazil. The data also show good agreement with proposed hypotheses of splitting and dispersion of major language groups over the last 3,000 years. Therefore, relevant aspects of Native American history can be traced using as few as 11 STR autosomal markers coupled with a broad geographic distribution of sampled populations.


Subject(s)
Evolution, Molecular , Indians, South American/genetics , Language , Microsatellite Repeats/genetics , Analysis of Variance , Cluster Analysis , Gene Frequency , Genetics, Population , Geography , Humans , Male , Models, Genetic , South America
15.
Mol Genet Genomic Med ; 9(7): e1694, 2021 07.
Article in English | MEDLINE | ID: mdl-34050721

ABSTRACT

BACKGROUND: Susceptibility to Chronic Myeloid Leukemia (CML) may be modulated by genetic variables. However, the majority of previous investigations have focused on genetically homogeneous populations, resulting in a lack of evidence on how genetic factors may influence the development of CML in miscegenated populations. We analyzed 30 polymorphisms in genes related to DNA repair, folate metabolism, transmembrane transport, xenobiotic metabolism, and pyrimidine synthesis in relation to their potential role in the susceptibility of the individual to CML. METHODS: This case-control study included 126 healthy individuals and 143 patients diagnosed with CML from the admixed population of the Brazilian Amazon. The samples were genotyped by real-time PCR and the genetic ancestry analysis was based on a panel of 61 ancestry informative markers. RESULTS: The results indicated a protective effect against the development of CML in carriers of the C allele of the rs28399433 (CYP2A6) gene and the CC genotype of the rs3742106 (ABCC4) gene. CONCLUSION: Our findings suggest that the rs3742106 (ABCC4) and rs28399433 (CYP2A6) polymorphisms may modulate susceptibility to CML in a population of the Brazilian Amazon region.


Subject(s)
Cytochrome P-450 CYP2A6/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Multidrug Resistance-Associated Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Brazil , Female , Humans , Male , Middle Aged
16.
J Pers Med ; 11(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34683186

ABSTRACT

BACKGROUND: Sarcopenia is a disease characterized by progressive reduction in muscle mass and strength or function. Although it is known that sarcopenia may be associated with environmental factors, studies suggest the identification of genes related to skeletal muscle maintenance that explain the susceptibility to the disease. OBJECTIVE: To analyze the influence of NFkB1 gene polymorphism on susceptibility to sarcopenia in the elderly. METHODS: This is a case-control study, which included 219 elderly people, 74 elderly people with sarcopenia, and 145 without sarcopenia. Samples were analyzed for NFkB1 gene polymorphism (rs28362491), genotyped in PCR, and followed by fragment analysis. To avoid misinterpretation due to population substructure, we applied a previously developed set of 61 informative ancestral markers that were genotyped by multiplex PCR. We used logistic regression to identify differences in genotypic frequencies between elderly people with and without sarcopenia. RESULTS: It was observed that the NFkB1 gene polymorphism presented frequencies of 24%, 50%, and 26% for the genotype DEL/DEL, DEL/INS, and INS/INS, respectively. Furthermore, elderly individuals with the INS/INS genotype had increased chances (p = 0.010; OR:2.943; 95%CI:1.301-6.654) for the development of sarcopenia. CONCLUSION: The INDEL polymorphism of the NFkB1 gene (rs28362491) may influence the susceptibility to sarcopenia in the elderly in elderly people in the Amazon.

17.
Hum Mutat ; 31(2): 184-90, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19953531

ABSTRACT

Estimating the proportions of different ancestries in admixed populations is very important in population genetics studies, and it is particularly important for detecting population substructure effects in case-control association studies. In this work, a set of 48 ancestry-informative insertion-deletion polymorphisms (INDELs) were selected with the goal of efficiently measuring the proportions of three different ancestries (sub-Saharan African, European, and Native American) in mixed populations. All selected markers can be easily analyzed via multiplex PCR and detected with standard capillary electrophoresis. A total of 593 unrelated individuals representative of European, African, and Native American parental populations were typed, as were 380 individuals from three Brazilian populations with known admixture patterns. As expected, the interethnic admixture estimates show that individuals from southern Brazil present an almost exclusively European ancestry; Afro-descendant communities in the Amazon region, apart from the major African contribution, present some degree of admixture with Europeans and Native Americans; and a sample from Belém, in the northeastern Amazon, shows a significant contribution of the three ethnic groups, although with a greater European proportion. In summary, a panel of ancestry-informative INDELs was optimized and proven to be a valuable tool for estimating individual and global ancestry proportions in admixed populations. The ability to accurately infer interethnic admixtures highlights the usefulness of this marker set for assessing population substructure in association studies, particularly those conducted in Brazilian and other Latin American populations sharing trihybrid ancestry patterns.


Subject(s)
Ethnicity/genetics , Genealogy and Heraldry , Genetics, Population , INDEL Mutation/genetics , Bias , Black People/genetics , Gene Frequency/genetics , Genetic Markers , Humans , Indians, North American/genetics , White People/genetics
18.
Mol Cancer Res ; 18(4): 517-528, 2020 04.
Article in English | MEDLINE | ID: mdl-31996469

ABSTRACT

Circulating tumor DNA (ctDNA) has recently emerged as a minimally invasive "liquid biopsy" tool in precision medicine. ctDNA-genomic DNA fragments that are released into the bloodstream after the active secretion of microvesicles or tumor cell lysis reflects tumor evolution and the genomic alterations present in primary and/or metastatic tumors. Notably, ctDNA analysis might allow the stratification of patients, the monitoring of the therapeutic response, and the establishment of an opportunity for early intervention independent of detection by imaging modalities or clinical symptoms. As oncology moves towards precision medicine, the information in ctDNA provides a means for the individual management of the patient based on their tumor's genetic profile. This review presents current evidence on the potential role for ctDNA in helping to guide individualized clinical treatment decisions for patients with melanoma, castration-resistant prostate cancer, breast cancer, metastatic colorectal cancer, and non-small cell lung cancer.


Subject(s)
Circulating Tumor DNA/genetics , Neoplasms/therapy , Precision Medicine/methods , Humans
19.
Hum Biol ; 81(1): 71-88, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19589020

ABSTRACT

Eleven short tandem repeat loci (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, TH01, and TPOX) were investigated in 232 individuals from 6 Amazonian native tribes (Tiriyó, Waiãpi, Zoé, Urubu-Kaapor, Awa-Guajá, and Parakanã). We added the new data to a database that included five previously typed native populations from the same area (Wai Wai, Gavião, Zoró, Suruí, and Xavante). The results presented here concern this new data set, which accounts for 526 individuals in total. We tested whether major geographic or linguistic barriers to gene flow exist among such human groups and tried to find a possible anthropological or ethnological explanation for such patterns. We measured the average heterozygosity (H) and the number of alleles (N(A) ) and found that both are lower than values observed in populations of different ethnic backgrounds, such as European or African descendants. Despite such a result, we found high between-population variation; lower H and/or N(A) values were obtained from four isolated tribes that came into contact with external nonnative populations in recent times (1921-1989). By applying analysis of molecular variance, generalized hierarchical modeling, and the Structure Bayesian analysis, we were not able to detect any significant geographic or linguistic barrier to gene flow. Geographic autocorrelation analysis suggests that the genetic structure of native Amazonian tribes is better explained by isolation by distance because the level of genetic similarity decreases according to linear geographic distance, reaching null or negative values at a scale of 300 km.


Subject(s)
Genetics, Population , Indians, South American/genetics , Microsatellite Repeats , Bayes Theorem , Brazil , Genetic Variation , Humans , Sequence Analysis, DNA
20.
Am J Phys Anthropol ; 139(3): 404-12, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19170209

ABSTRACT

The extent of X-chromosome linkage disequilibrium (LD) was studied in a southern Brazilian population, and in a pool of samples from Amerindian populations. For this purpose, 11 microsatellites, located mostly in a Xq region comprising approximately 86 Mb was investigated. The lower Amerindian gene diversity associated with significant differences between the populations studied indicated population structure as the main cause for the higher LD values in the Amerindian pool. On the other hand, the LD levels of the non-Amerindian Brazilian sample, although less extensive than that of the Amerindians, were probably determined by admixture events. Our results indicated that different demographic histories have significant effects on LD levels of human populations, and provide a first approach to the X-chromosome ancestry of Amerindian and non-Amerindian Brazilian populations, being valuable for future studies involving mapping and population genetic studies.


Subject(s)
Chromosomes, Human, X/genetics , Genetic Variation , Genetics, Population , Indians, South American/genetics , Linkage Disequilibrium , Analysis of Variance , Brazil , Gene Frequency , Humans , Male , Microsatellite Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL