Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Bioorg Chem ; 150: 107525, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38852308

ABSTRACT

This review explores the recent advancements in the design and synthesis of pseudo-natural products (pseudo-NPs) by employing innovative principles and strategies, heralding a transformative era in chemistry and biology. Pseudo-NPs, produced through in silico fragmentation and the de novo recombination of natural product fragments, reveal compounds endowed with distinct biological activities. Their advantage lies in transcending natural product structures, fostering diverse possibilities. Research in this area over the past decade has yielded unconventional combinations of natural product fragments, leading to the identification of novel compounds possessing unique scaffolds and biological significance, thereby contributing to the discovery of new therapeutics. The pseudo-NPs exert potent biological effects through various signaling pathways. In chemical biology and medicinal chemistry, designing pseudo-NPs is an important strategy, harnessing molecular hybridization and bioinspired synthesis to generate diverse compounds with remarkable biological activities, underscoring their immense potential in drug discovery and development.

2.
Molecules ; 28(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570823

ABSTRACT

Polo-like kinase-1 (PLK-1) is an essential mitotic serine/threonine (Ser/Thr) kinase that belongs to the Polo-like kinase (PLK) family and is overexpressed in non-small cell lung cancer (NSCLC) via promotion of cell division. Therefore, PLK-1 may act as a promising target for the therapeutic cure of various cancers. Although a variety of anti-cancer drugs, both synthetic and naturally occurring, such as volasertib, onvansertib, thymoquinone, and quercetin, are available either alone or in combination with other therapies, they have limited efficacy, especially in the advanced stages of cancer. To the best of our knowledge, no anticancer agent has been reported from marine algae or microorganisms to date. Thus, the aim of the present study is a high-throughput virtual screening of phlorotannins, obtained from edible brown algae, using molecular docking and molecular dynamic simulation analysis. Among these, Pentafuhalol-B (PtB) showed the lowest binding energy (best of triplicate runs) against the target protein PLK-1 as compared to the reference drug volasertib. Further, in MD simulation (best of triplicate runs), the PtB-PLK-1 complex displayed stability in an implicit water system through the formation of strong molecular interactions. Additionally, MMGBSA calculation (best of triplicate runs) was also performed to validate the PtB-PLK-1 complex binding affinities and stability. Moreover, the chemical reactivity of PtB towards the PLK-1 target was also optimised using density functional theory (DFT) calculations, which exhibited a lower HOMO-LUMO energy gap. Overall, these studies suggest that PtB binds strongly within the pocket sites of PLK-1 through the formation of a stable complex, and also shows higher chemical reactivity than the reference drug volasertib. The present study demonstrated the inhibitory nature of PtB against the PLK-1 protein, establishing its potential usefulness as a small molecule inhibitor for the treatment of different types of cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Molecular Docking Simulation , Cell Cycle Proteins/metabolism , Cell Division , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
3.
IEEE Trans Industr Inform ; 17(9): 6489-6498, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37981913

ABSTRACT

Rapid and precise diagnosis of COVID-19 is one of the major challenges faced by the global community to control the spread of this overgrowing pandemic. In this article, a hybrid neural network is proposed, named CovTANet, to provide an end-to-end clinical diagnostic tool for early diagnosis, lesion segmentation, and severity prediction of COVID-19 utilizing chest computer tomography (CT) scans. A multiphase optimization strategy is introduced for solving the challenges of complicated diagnosis at a very early stage of infection, where an efficient lesion segmentation network is optimized initially, which is later integrated into a joint optimization framework for the diagnosis and severity prediction tasks providing feature enhancement of the infected regions. Moreover, for overcoming the challenges with diffused, blurred, and varying shaped edges of COVID lesions with novel and diverse characteristics, a novel segmentation network is introduced, namely tri-level attention-based segmentation network. This network has significantly reduced semantic gaps in subsequent encoding-decoding stages, with immense parallelization of multiscale features for faster convergence providing considerable performance improvement over traditional networks. Furthermore, a novel tri-level attention mechanism has been introduced, which is repeatedly utilized over the network, combining channel, spatial, and pixel attention schemes for faster and efficient generalization of contextual information embedded in the feature map through feature recalibration and enhancement operations. Outstanding performances have been achieved in all three tasks through extensive experimentation on a large publicly available dataset containing 1110 chest CT-volumes, which signifies the effectiveness of the proposed scheme at the current stage of the pandemic.

4.
Bioorg Chem ; 59: 91-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25727263

ABSTRACT

Ligand-based and structure-based methods were applied in combination to exploit the physicochemical properties of 2,3-dideoxy hex-2-enopyranosid-4-uloses against Mycobacterium tuberculosis H37Rv. Statistically valid 3D-QSAR models with good correlation and predictive power were obtained with CoMFA steric and electrostatic fields (r(2) = 0.797, q(2) = 0.589) and CoMSIA with combined steric, electrostatic, hydrophobic and hydrogen bond acceptor fields (r(2) = 0.867, q(2) = 0.570) based on training set of 33 molecules with predictive r(2) of 0.808 and 0.890 for CoMFA and CoMSIA respectively. The results illustrate the requirement of optimal alkyl chain length at C-1 position and acceptor groups along hydroxy methyl substituent of C-6 to enhance the anti-tubercular activity of the 2,3-dideoxy hex-2-enopyranosid-4-uloses while any substitution at C-3 position exert diminishing effect on anti-tubercular activity of these enulosides. Further, homology modeling of M. tuberculosis alpha-mannosidase followed by molecular docking and molecular dynamics simulations on co-complexed models were performed to gain insight into the rationale for binding affinity of selected inhibitors with the target of interest. The comprehensive information obtained from this study will help to better understand the structural basis of biological activity of this class of molecules and guide further design of more potent analogues as anti-tubercular agents.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Deoxy Sugars/chemistry , Deoxy Sugars/pharmacology , Mycobacterium tuberculosis/enzymology , alpha-Mannosidase/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/drug effects , Quantitative Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology , alpha-Mannosidase/chemistry , alpha-Mannosidase/metabolism
5.
Antimicrob Agents Chemother ; 58(6): 3530-2, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24687500

ABSTRACT

A promising modified sugar molecule was identified which was active against multidrug-resistant (MDR) strains of Mycobacterium tuberculosis, suggesting involvement of a new target. The compound was demonstrated to be bactericidal, inhibited the growth of M. tuberculosis in mice, and targeted alpha-mannosidase as a competitive inhibitor with a Ki value of 353.9 µM.


Subject(s)
Antitubercular Agents/pharmacology , Deoxy Sugars/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , alpha-Mannosidase/antagonists & inhibitors , Animals , Disease Models, Animal , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mycobacterium tuberculosis/growth & development , Tuberculosis, Multidrug-Resistant/microbiology
6.
Biomed Phys Eng Express ; 10(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38457844

ABSTRACT

Objective.Although emotion recognition has been studied for decades, a more accurate classification method that requires less computing is still needed. At present, in many studies, EEG features are extracted from all channels to recognize emotional states, however, there is a lack of an efficient feature domain that improves classification performance and reduces the number of EEG channels.Approach.In this study, a continuous wavelet transform (CWT)-based feature representation of multi-channel EEG data is proposed for automatic emotion recognition. In the proposed feature, the time-frequency domain information is preserved by using CWT coefficients. For a particular EEG channel, each CWT coefficient is mapped into a strength-to-entropy component ratio to obtain a 2D representation. Finally, a 2D feature matrix, namely CEF2D, is created by concatenating these representations from different channels and fed into a deep convolutional neural network architecture. Based on the CWT domain energy-to-entropy ratio, effective channel and CWT scale selection schemes are also proposed to reduce computational complexity.Main results.Compared with previous studies, the results of this study show that valence and arousal classification accuracy has improved in both 3-class and 2-class cases. For the 2-class problem, the average accuracies obtained for valence and arousal dimensions are 98.83% and 98.95%, respectively, and for the 3-class, the accuracies are 98.25% and 98.68%, respectively.Significance.Our findings show that the entropy-based feature of EEG data in the CWT domain is effective for emotion recognition. Utilizing the proposed feature domain, an effective channel selection method can reduce computational complexity.


Subject(s)
Algorithms , Electroencephalography , Emotions , Neural Networks, Computer , Wavelet Analysis , Humans , Electroencephalography/methods , Signal Processing, Computer-Assisted , Entropy , Arousal/physiology
7.
RSC Adv ; 14(17): 12009-12020, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38623290

ABSTRACT

Human skin emits a series of volatile compounds from the skin due to various metabolic processes, microbial activity, and several external factors. Changes in the concentration of skin volatile metabolites indicate many diseases, including diabetes, cancer, and infectious diseases. Researchers focused on skin-emitted compounds to gain insight into the pathophysiology of various diseases. In the case of skin volatolomics research, it is noteworthy that sample preparation, sampling protocol, analytical techniques, and comprehensive validation are important for the successful integration of skin metabolic profiles into regular clinical settings. Solid-phase microextraction techniques and polymer-based active sorbent traps were developed to capture the skin-emitted volatile compounds. The primary advantage of these sample preparation techniques is the ability to efficiently and targetedly capture skin metabolites, thus improving the detection of the biomarkers associated with various diseases. In further research, polydimethyl-based patches were utilized for skin research due to their biocompatibility and thermal stability properties. The microextraction sampling tools coupled with high sensitive Gas Chromatography-Mass Spectrometer provided a potential platform for skin volatolomes, thus emerging as a state-of-the-art analytical technique. Later, technological advancements, including the design of wearable sensors, have enriched skin-based research as it can integrate the information from skin-emitted volatile profiles into a portable platform. However, individual-specific hydration, temperature, and skin conditions can influence variations in skin volatile concentration. Considering the subject-specific skin depth, sampling time standardization, and suitable techniques may improve the skin sampling techniques for the potential discovery of various skin-based marker compounds associated with diseases. Here, we have summarised the current research progress, limitations, and technological advances in skin-based sample preparation techniques for disease diagnosis, monitoring, and personalized healthcare applications.

8.
Front Pharmacol ; 14: 1168566, 2023.
Article in English | MEDLINE | ID: mdl-37214464

ABSTRACT

Herein, we report an efficient and eco-friendly, ultrasound assisted synthetic strategy for the construction of diversified pyrrolobenzodiazepine-triazole hybrids, which are potentially pharmaceutically important scaffolds, via a domino reaction involving intermolecular electrophilic substitution followed by intramolecular Huisgen 1,3-dipolar azide-alkyne cycloaddition. The USP of the reported protocol is the use of benign and inexpensive, recyclable molecular iodine-ionic liquid synergistic catalytic system cum reaction media for achieving the synthesis. The other salient features of this method are the use of mild reaction conditions, high yield and atom economy, operational simplicity, broad substrate scope and easy workup and purification. All the synthesized compounds were evaluated for in vitro anti-proliferative activity against various cancer cell lines. From among the synthesized title compounds, 9,9-dimethyl-8-phenyl-9H-benzo [b]pyrrolo [1,2-d][1,2,3]triazolo[5,1-g][1,4]diazepine (7) was found most to be the most active compound exhibiting IC50 value of 6.60, 5.45, 7.85, 11.21, 12.24, 10.12, and 11.32 µM against MCF-7, MDA-MB-231, HeLa, SKOV-3, A549, HCT-116 and DLD-1 cell lines, respectively. Further the compounds were found to be non-toxic against normal human embryonic kidney (HEK-293) cell line.

9.
Med Chem ; 19(5): 413-430, 2023.
Article in English | MEDLINE | ID: mdl-36200254

ABSTRACT

Pathogenic bacteria, with their innate resistance to drugs, pose a constant threat to human health and well-being and put a persistent strain on the health care system. Development of more effective and safer novel antibacterial drugs is warranted to counter the menace unleashed by pathogenic bacteria. Integration of privileged pharmacophores from various bioactive molecules into a single template is a promising strategy to obtain new leads with unique mechanisms of action to overcome drug resistance. In the past few years, numerous isatin-based hybrid molecules were screened and their pharmacological properties were explored in efforts to develop novel therapeutics. The results of screening show that isatin conjugates exhibit promising activity against a broad range of highly pathogenic gram-positive and gram-negative bacteria and can serve as important leads in the discovery of highly potent broad spectrum antibacterial drugs. Herein, we review the antibacterial bioactive profile of a variety of hybrid isatin derivatives, including isatin-azole, isatin-quinoline/ quinolone, isatin-furan/coumarin, isatin-hydrazone/(thio)semicarbazone, isatin dimers, and isatin- indole hybrids.


Subject(s)
Anti-Bacterial Agents , Isatin , Humans , Anti-Bacterial Agents/pharmacology , Isatin/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Bacteria , Structure-Activity Relationship , Microbial Sensitivity Tests
10.
Front Pharmacol ; 14: 1231450, 2023.
Article in English | MEDLINE | ID: mdl-37745072

ABSTRACT

Twelve novel neo-tanshinlactone-chalcone hybrid molecules were constructed through a versatile methodology involving the Horner-Wadsworth-Emmons (HWE) olefination of 4-formyl-2H-benzo [h]chromen-2-ones and phosphonic acid diethyl esters, as the key step, and evaluated for anticancer activity against a series of four breast cancers and their related cell lines, viz. MCF-7 (ER + ve), MDA-MB-231 (ER-ve), HeLa (cervical cancer), and Ishikawa (endometrial cancer). The title compounds showed excellent to moderate in vitro anti-cancer activity in a range of 6.8-19.2 µM (IC50). Compounds 30 (IC50 = 6.8 µM and MCF-7; IC50 = 8.5 µM and MDA-MB-231) and 31 (IC50 = 14.4 µM and MCF-7; IC50 = 15.7 µM and MDA-MB-231) exhibited the best activity with compound 30 showing more potent activity than the standard drug tamoxifen. Compound 30 demonstrated a strong binding affinity with tumor necrosis factor α (TNF-α) in molecular docking studies. This is significant because TNFα is linked to MCF-7 cancer cell lines, and it enhances luminal breast cancer cell proliferation by upregulating aromatase. Additionally, virtual ADMET studies confirmed that hybrid compounds 30 and 31 met Lipinski's rule; displayed high bioavailability, excellent oral absorption, favorable albumin interactions, and strong penetration capabilities; and improved blood-brain barrier crossing. Based on the aforementioned results, compound 30 has been identified as a potential anti-breast cancer lead molecule.

11.
Anticancer Agents Med Chem ; 22(19): 3269-3279, 2022.
Article in English | MEDLINE | ID: mdl-35418291

ABSTRACT

BACKGROUND: In recent years, there has been a crucial need for the design and development of novel anticancer drugs that can lessen the serious health problems and unwanted side effects associated with currently used anticancer drugs. The triazole nucleus is well-recognized to possess numerous pharmacological activities, including anticancer, as revealed by various investigations on anticancer drugs and the latest research findings. OBJECTIVE: The aim of this review article is to summarise the anticancer potential of 1, 2, 3-triazole, 1, 2, 4-triazole and heterocycle-fused triazole derivatives against several human cancer cell lines, compiling research articles published between 2010 and 2021. METHODS: Data were collected from PubMed, Google scholar and Research Gate using keywords "anticancer activity of 1, 2, 3-triazole derivatives", "anticancer activity of 1, 2, 4-triazole derivatives" and "anticancer activity of heterocycle- fused triazole derivatives" and reviewed comprehensively. RESULTS: This review examines the anticancer potential of 1,2,3-triazole coupledoleanolic acid/dithiocarbamate/ pyrido[ 2,3-d] pyrimidine derivatives, 1,2,3-triazole linked pyrimidine/1,4-naphthoquinone hybrids, and 1,2,4-triazole substituted methanone derivatives, acridine-based 1,2,4-triazole derivatives, 1,2,4-thiadiazol coupled with 1,2,4- triazole and 5-ene-thiazolo[3,2-b][1,2,4]triazole-6(5H)-one derivatives against several human cancer cell lines. CONCLUSION: This review highlights the key findings in the area of cancer therapy. Triazole derivatives possess anticancer activity against various human cancer cell lines, and hence the triazole core may act as a lead molecule for the synthesis of novel anticancer drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Acridines , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Neoplasms/drug therapy , Prospective Studies , Pyrimidines/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology
12.
IEEE J Transl Eng Health Med ; 10: 3300108, 2022.
Article in English | MEDLINE | ID: mdl-36032311

ABSTRACT

Background: The emergence of wireless capsule endoscopy (WCE) has presented a viable non-invasive mean of identifying gastrointestinal diseases in the field of clinical gastroenterology. However, to overcome its extended time of manual inspection, a computer aided automatic detection system is getting vast popularity. In this case, major challenges are low resolution and lack of regional context in images extracted from WCE videos. Methods: For tackling these challenges, in this paper a convolution neural network (CNN) based architecture, namely RAt-CapsNet, is proposed that reliably employs regional information and attention mechanism to classify abnormalities from WCE video data. The proposed RAt-CapsNet consists of two major pipelines: Compression Pipeline and Regional Correlative Pipeline. In the compression pipeline, an encoder module is designed using a Volumetric Attention Mechanism which provides 3D enhancement to feature maps using spatial domain condensation as well as channel-wise filtering for preserving relevant structural information of images. On the other hand, the regional correlative pipeline consists of Pyramid Feature Extractor which operates on image driven feature vectors to generalize and propagate local relationships of pixels from WCE abnormalities with respect to the normal healthy surrounding. The feature vectors generated by the pipelines are then accumulated to formulate a classification standpoint. Results: Promising computational accuracy of mean 98.51% in binary class and over 95.65% in multi-class are obtained through extensive experimentation on a highly unbalanced public dataset with over 47 thousand labelled. Conclusion: This outcome in turn supports the efficacy of the proposed methodology as a noteworthy WCE abnormality detection as well as diagnostic system.


Subject(s)
Capsule Endoscopy , Data Compression , Deep Learning , Animals , Gastrointestinal Tract , Neural Networks, Computer , Rats
13.
Appl Biochem Biotechnol ; 194(12): 6438-6467, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35900713

ABSTRACT

Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.


Subject(s)
Antineoplastic Agents , Heterocyclic Compounds , Neoplasms , Humans , Oxygen , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Heterocyclic Compounds/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Sulfur
14.
J Org Chem ; 76(21): 8930-43, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21955144

ABSTRACT

The development of an innovative method to access enantiopure 2,4-disubstituted 6-hydroxy-1,6-dihydro-2H-pyridin-3-ones starting from D-glucal via the aza-Achmatowicz transformation has been described. These highly functionalized pyridin-3-ones have been utilized for the synthesis of contiguously substituted pyridines through a rapid and efficient Et(3)N/Ac(2)O promoted cyclo-elimination, aromatization cascade, allowing the facile assembly of important pyridine-based building blocks like 2-substituted 3-acetoxy-4-iodopyridines and enantiopure 2-substituted 3-acetoxy-4-pyridinemethanols possessing benzylic stereogenic centers, whose synthesis otherwise would be tedious. The utilization of commercially available sugars as starting materials, mild reaction conditions, catalytic transfer hydrogen (CTH) of α-furfuryl azide derivatives, transfer of chiral aryl/alkyl methanols from enulosides to pyridin-3-ones and pyridines, high yields, and short reaction times are key features of this method. The utility of the method has been further exemplified by demonstrating the usage of the 2-substituted 3-acetoxy-4-iodopyridine for the construction of biologically significant molecules like 2,7-disubstituted furo[2,3-c]pyridines and 7,7'-disubstituted 2,2'-bifuro[2,3-c]pyridines.


Subject(s)
Iodopyridones/chemistry , Iodopyridones/chemical synthesis , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridones/chemistry , Pyridones/chemical synthesis , Molecular Structure , Stereoisomerism
15.
Nat Prod Res ; 35(6): 984-987, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31134812

ABSTRACT

Bioassay targeted, 80% aqueous ethanol crude extract of the fruits of Dillenia indica Linn, using the unmodified household coffee maker, afforded five compounds, namely betulinic acid (1), rhamnazin (2), dillenetin (3), luteolin-7-O-ß-D-glucoside (4) and hypolaetin-8-O-ß-D-glucoside (5). The crude extract, fractions and purified compounds were tested against MDA MB-231, A549 and HeLa cancer cell lines by MTT assay, using betulinic acid 1, as a positive control. Compound 3 showed the best activity against A549 (IC50 = 26.60 ± 2.5 µM) and HeLa cancer cell lines (IC50 =19.35 ± 0.9 µM), whereas compound 5 was found to show the best activity against MDA MB-231 (IC50 = 34.62 ± 5.2µM) cancer cell line. These highly potent anticancer compounds obtained from the fruits of D. indica may be suitable for herbal drug development and formulations.


Subject(s)
Antineoplastic Agents/isolation & purification , Dilleniaceae/chemistry , Fruit/chemistry , Household Articles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coffee , Humans , Plant Extracts/chemistry
16.
Eur J Med Chem ; 209: 112862, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33070079

ABSTRACT

The global effort to combat and contain the coronavirus disease 2019 (COVID-19) caused by the recently discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now proceeding on a war footing. The world was slow to react to the developing crisis, but once the contours of the impending calamity became evident, the different state and non-state actors have raced to put their act together. The COVID-19 pandemic has blatantly exposed the shortcomings of our healthcare system and the limitations of medical science, despite considerable advances in recent years. To effectively tackle the current pandemic, almost unprecedented in the modern age, there is an urgent need for a concerted, sustained, and coordinated effort towards the development of new diagnostics, therapeutic and vaccines, and the ramping up of the healthcare infrastructure, especially in the poorer underprivileged nations. Towards this end, researchers around the world are working tirelessly to develop new diagnostics, vaccines, and therapeutics. Efforts to develop a vaccine against COVID-19 are presently underway in several countries around the world, but a new vaccine is expected only by the end of the year-at the earliest. New drug development against COVID-19 and its approval may take even longer. Under such circumstances, drug repurposing has emerged as a realistic and effective strategy to counter the current menace, and several antiviral and antimalarial medicines are currently in different stages of clinical trials. Researchers are also experimenting with nutrients, vitamins, monoclonal antibodies, and convalescent plasma as immunity boosters against the SARS-CoV-2. This report presents a critical analysis of the global clinical trial landscape for COVID-19 with an emphasis on the therapeutic agents and vaccines currently being tested at pandemic speed.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Vaccines/therapeutic use , COVID-19/therapy , COVID-19/epidemiology , COVID-19/prevention & control , Clinical Trials as Topic , Drug Repositioning , Humans , Pandemics/prevention & control , SARS-CoV-2
17.
Future Med Chem ; 12(8): 709-739, 2020 04.
Article in English | MEDLINE | ID: mdl-32208986

ABSTRACT

Aim: Phenanthridines are an essential class of nitrogenous heterocycles with extensive applications in medicinal chemistry. The development of efficient and eco-friendly methods for the preparation of chirally pure dihydropyrrolo[1,2-f]phenanthridines (5a-h), and their in vitro evaluation and modeling studies as potential anticancer, antioxidant and DNA cleavage agents is reported. Methodology & results: Compounds 5a-h were prepared through a facile one-pot synthesis and characterized by infrared, high resolution mass spectrometry, 1H and 13C nuclear magnetic resonance. The molecules were subjected to virtual screening and docking analysis against selected human molecular targets. Compound 5g displayed good binding properties as well as significant anticancer and DNA cleavage activity. Conclusion: Compound 5g has been identified as a potential lead candidate for further testing against additional cancer cell lines and animal models in future.


Subject(s)
Antineoplastic Agents/pharmacology , Phenanthridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Cleavage , DNA, Bacterial/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Phenanthridines/chemical synthesis , Phenanthridines/chemistry , Tumor Cells, Cultured
18.
Chemistry ; 15(24): 6041-9, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19418522

ABSTRACT

Simple and efficient syntheses, catalysed by a mixed Lewis acid system (ZrCl(4)/ZnI(2)), of enantiomerically pure 2- and 2,3-disubstituted furan derivatives--including important synthons such as 3-iodofuran and 3-(hydroxymethyl)furan derivatives--from commercially available 3,4,6-tri-O-acetyl-D-glucal are described. The transformation is achieved through a synergistic interaction between ZrCl(4) and ZnI(2) in catalytic amounts.


Subject(s)
Furans/chemical synthesis , Catalysis , Chlorides/chemistry , Furans/chemistry , Iodides/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Stereoisomerism , Zinc Compounds/chemistry
19.
Eur J Med Chem ; 182: 111657, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31499361

ABSTRACT

The emergence of drug resistance, coupled with the issue of low tumor selectivity and toxicity is a major pitfall in cancer chemotherapy. It has necessitated the urgent need for the discovery of less toxic and more potent new anti-cancer pharmaceuticals, which target the interactive mechanisms involved in division and metastasis of cancer cells. Human DNA ligase I (hligI) plays an important role in DNA replication by linking Okazaki fragments on the lagging strand of DNA, and also participates in DNA damage repair processes. Dysregulation of the functioning of such ligases can severely impact DNA replication and repair pathways events that are generally targeted in cancer treatment. Although, several human DNA ligase inhibitors have been reported in the literature but unfortunately not a single inhibitor is currently being used in cancer chemotherapy. Results of pre-clinical studies also support the fact that human DNA ligases are an attractive target for the development of new anticancer agents which work by the selective inhibition of rapidly proliferating cancer cells. In this manuscript, we discuss, in brief, the structure, synthesis, structure-activity-relationship (SAR) and anticancer activity of recently reported hLigI inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Ligase ATP/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , DNA Ligase ATP/metabolism , Enzyme Inhibitors/chemistry , Humans , Neoplasms/metabolism , Neoplasms/pathology , Structure-Activity Relationship
20.
Future Med Chem ; 10(10): 1241-1260, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29749746

ABSTRACT

Dithiolethiones are five-membered sulfur-containing cyclic scaffolds that exhibit antioxidative, anti-inflammatory, antithrombic and chemotherapeutic activities. Dithiolethiones display the chemopreventive and cytoprotective effects by activating the antioxidant response element and mounting the transcription of cytoprotective phase II enzymatic machinery. In addition, several classes of dithiolethiones efficiently modulate the activities of proteins that play crucial roles in normal and cancer cells, including glutathione S-transferase, cyclooxygenases and master regulator NF-κB. The present paper summarizes synthetic aspects, pharmacological potentials and biological attributes of dithiolethiones and its derivatives. Additionally, this review concludes with a discussion on how the current state-of-the-art technologies may help in defining a structure-activity relationship of dithiolethiones, thereby facilitating the design and synthesis of potent drug candidates.


Subject(s)
Anticarcinogenic Agents/chemistry , Thiones/chemistry , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Drug Design , Humans , Hydrogen Sulfide/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/prevention & control , Nitric Oxide/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Thiones/pharmacology , Thiones/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL