Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nature ; 603(7899): 166-173, 2022 03.
Article in English | MEDLINE | ID: mdl-35197630

ABSTRACT

Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS-TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Pancreatic Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Drug Combinations , Drug Synergism , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
2.
Nature ; 568(7753): 511-516, 2019 04.
Article in English | MEDLINE | ID: mdl-30971826

ABSTRACT

Functional genomics approaches can overcome limitations-such as the lack of identification of robust targets and poor clinical efficacy-that hamper cancer drug development. Here we performed genome-scale CRISPR-Cas9 screens in 324 human cancer cell lines from 30 cancer types and developed a data-driven framework to prioritize candidates for cancer therapeutics. We integrated cell fitness effects with genomic biomarkers and target tractability for drug development to systematically prioritize new targets in defined tissues and genotypes. We verified one of our most promising dependencies, the Werner syndrome ATP-dependent helicase, as a synthetic lethal target in tumours from multiple cancer types with microsatellite instability. Our analysis provides a resource of cancer dependencies, generates a framework to prioritize cancer drug targets and suggests specific new targets. The principles described in this study can inform the initial stages of drug development by contributing to a new, diverse and more effective portfolio of cancer drug targets.


Subject(s)
CRISPR-Cas Systems/genetics , Drug Discovery/methods , Gene Editing , Molecular Targeted Therapy/methods , Neoplasms/genetics , Neoplasms/therapy , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Female , Genome, Human/genetics , Humans , Mice , Microsatellite Instability , Neoplasm Transplantation , Neoplasms/classification , Neoplasms/pathology , Organ Specificity , Reproducibility of Results , Synthetic Lethal Mutations/genetics , Werner Syndrome/genetics , Werner Syndrome Helicase/genetics
3.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37079732

ABSTRACT

MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1.


Subject(s)
Software , Humans , Animals , Cluster Analysis , Time Factors , Disease Models, Animal , Risk Assessment
4.
Nature ; 526(7572): 263-7, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26416732

ABSTRACT

Colorectal cancer is the third most common cancer worldwide, with 1.2 million patients diagnosed annually. In late-stage colorectal cancer, the most commonly used targeted therapies are the monoclonal antibodies cetuximab and panitumumab, which prevent epidermal growth factor receptor (EGFR) activation. Recent studies have identified alterations in KRAS and other genes as likely mechanisms of primary and secondary resistance to anti-EGFR antibody therapy. Despite these efforts, additional mechanisms of resistance to EGFR blockade are thought to be present in colorectal cancer and little is known about determinants of sensitivity to this therapy. To examine the effect of somatic genetic changes in colorectal cancer on response to anti-EGFR antibody therapy, here we perform complete exome sequence and copy number analyses of 129 patient-derived tumour grafts and targeted genomic analyses of 55 patient tumours, all of which were KRAS wild-type. We analysed the response of tumours to anti-EGFR antibody blockade in tumour graft models and in clinical settings and functionally linked therapeutic responses to mutational data. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Novel alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade. Amplifications and sequence changes in the tyrosine kinase receptor adaptor gene IRS2 were identified in tumours with increased sensitivity to anti-EGFR therapy. Therapeutic resistance to EGFR blockade could be overcome in tumour graft models through combinatorial therapies targeting actionable genes. These analyses provide a systematic approach to evaluating response to targeted therapies in human cancer, highlight new mechanisms of responsiveness to anti-EGFR therapies, and delineate new avenues for intervention in managing colorectal cancer.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Genome, Human/genetics , Genomics , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cetuximab/pharmacology , Cetuximab/therapeutic use , Colorectal Neoplasms/metabolism , DNA Copy Number Variations/genetics , ErbB Receptors/chemistry , ErbB Receptors/genetics , Exome/genetics , Female , Humans , Insulin Receptor Substrate Proteins/genetics , MAP Kinase Kinase 1/genetics , Mice , Molecular Targeted Therapy , Mutation/genetics , Panitumumab , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Xenograft Model Antitumor Assays
5.
BMC Biol ; 14: 5, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26787475

ABSTRACT

BACKGROUND: Tankyrases are poly(adenosine diphosphate)-ribose polymerases that contribute to biological processes as diverse as modulation of Wnt signaling, telomere maintenance, vesicle trafficking, and microtubule-dependent spindle pole assembly during mitosis. At interphase, polarized reshaping of the microtubule network fosters oriented cell migration. This is attained by association of adenomatous polyposis coli with the plus end of microtubules at the cortex of cell membrane protrusions and microtubule-based centrosome reorientation towards the migrating front. RESULTS: Here we report a new function for tankyrases, namely, regulation of directional cell locomotion. Using a panel of lung cancer cell lines as a model system, we found that abrogation of tankyrase activity by two different, structurally unrelated small-molecule inhibitors (one introduced and characterized here for the first time) or by RNA interference-based genetic silencing weakened cell migration, invasion, and directional movement induced by the motogenic cytokine hepatocyte growth factor. Mechanistically, the anti-invasive outcome of tankyrase inhibition could be ascribed to sequential deterioration of the distinct events that govern cell directional sensing. In particular, tankyrase blockade negatively impacted (1) microtubule dynamic instability; (2) adenomatous polyposis coli plasma membrane targeting; and (3) centrosome reorientation. CONCLUSIONS: Collectively, these findings uncover an unanticipated role for tankyrases in influencing at multiple levels the interphase dynamics of the microtubule network and the subcellular distribution of related polarity signals. These results encourage the further exploration of tankyrase inhibitors as therapeutic tools to oppose dissemination and metastasis of cancer cells.


Subject(s)
Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung/drug effects , Tankyrases/antagonists & inhibitors , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Microtubules/metabolism , Microtubules/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , RNA Interference , Tankyrases/genetics , Tankyrases/metabolism
6.
BMC Cancer ; 16: 90, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26868125

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive, highly lethal tumors and lacks of effective chemo and targeted therapies. Cell lines and animal models, even partially reflecting tumor characteristics, have limits to study ICC biology and drug response. In this work, we created and characterized a novel ICC patient-derived xenograft (PDX) model of Italian origin. METHODS: Seventeen primary ICC tumors derived from Italian patients were implanted into NOD (Non-Obese Diabetic)/Shi-SCID (severe combined immunodeficient) mice. To verify if the original tumor characteristics were maintained in PDX, immunohistochemical (cytokeratin 7, 17, 19, and epithelial membrane antigen) molecular (gene and microRNA expression profiling) and genetic analyses (comparative genomic hybridization array, and mutational analysis of the kinase domain of EGFR coding sequence, from exons 18 to 21, exons 2 to 4 of K-RAS, exons 2 to 4 of N-RAS, exons 9 and 20 of PI3KCA, and exon 15 of B-RAF) were performed after tumor stabilization. RESULTS: One out of 17 (5.8%) tumors successfully engrafted in mice. A high molecular and genetic concordance between primary tumor (PR) and PDX was confirmed by the evaluation of biliary epithelial markers, tissue architecture, genetic aberrations (including K-RAS G12D mutation), and transcriptomic and microRNA profiles. CONCLUSIONS: For the first time, we established a new ICC PDX model which reflects the histology and genetic characteristics of the primary tumor; this model could represent a valuable tool to understand the tumor biology and the progression of ICC as well as to develop novel therapies for ICC patients.


Subject(s)
Cholangiocarcinoma/genetics , Liver Neoplasms/genetics , MicroRNAs/biosynthesis , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cholangiocarcinoma/pathology , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Mice , MicroRNAs/genetics , Mutation , Xenograft Model Antitumor Assays
7.
FASEB J ; 28(9): 4055-67, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24903273

ABSTRACT

The tyrosine kinase encoded by the MET oncogene is activated by gene mutation or amplification in tumors, which in most instances maintain addiction, i.e., dependency, to MET activation. This makes MET an attractive candidate for targeted therapies. Here we show that, in 3/3 MET-addicted human gastric cancer cell lines, MET kinase inhibition resulted in a 3- to 4-fold increased expression of the antiapoptotic small heat-shock protein of 27 kDa (HSP27, HSPB1). HSP27 increase depended on the inhibition of the MEK/ERK pathway and on heat-shock factor 1 (HSF1) and hypoxia-inducible factor-1α (HIF-1α) regulation. Importantly, HSP27-silenced MET-addicted cells underwent 2- and 3-fold more apoptosis following MET inhibition in vitro and in vivo, respectively. Likewise, in human cancer cells susceptible to epidermal growth factor receptor (EGFR) inhibition, EGFR inhibitors induced HSP27 expression and were strengthened by HSP27 suppression. In control cell lines that were not affected by drugs targeting MET or EGFR, these drugs did not induce HSP27 increase. Therefore, in cancer therapies targeting the MET pathway, the induction of HSP27 might limit the efficacy of anti-MET agents. As HSP27 increase also impairs the effectiveness of EGFR inhibitors and is known to protect cells from chemotherapeutics, the induction of HSP27 by targeted agents might strongly affect the success of combination treatments.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , HSP27 Heat-Shock Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Stomach Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Cycle/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , HSP27 Heat-Shock Proteins/antagonists & inhibitors , HSP27 Heat-Shock Proteins/genetics , Heat-Shock Proteins , Humans , Immunoenzyme Techniques , Mice , Molecular Chaperones , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology , Tumor Cells, Cultured , Up-Regulation , Xenograft Model Antitumor Assays
8.
Genes Chromosomes Cancer ; 53(12): 1033-40, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25231053

ABSTRACT

ROS1 rearrangements have been detected in a variety of tumors and are considered as suitable targets of anticancer therapies. We developed a new, quick, specific, and sensitive PCR test to screen for the FIG-ROS1 fusion and applied it to a series of Italian patients with bile duct carcinoma (BTC). Formalin-fixed, paraffin-embedded tissues, derived from 65 Italian BTC patients, and six cell lines were analyzed by nested PCR to investigate the prevalence of a previously reported FIG-ROS1 fusion. The specificity and sensitivity of nested PCR were investigated in FIG-ROS1 positive U118MG cells in reconstitution experiments with peripheral blood mononuclear cells. We found that six out of 65 (9%) BTC patients were positive for the FIG-ROS1 fusion, comprising two out of 14 (14%) gallbladder carcinoma (GBC) patients and four out of 25 (16%) extrahepatic cholangiocarcinoma (ECC) patients. None of the 26 intrahepatic cholangiocarcinoma cases harbored the FIG-ROS1 fusion. All the cell lines were negative for this variant. In conclusion, 14-16% of GBC and ECC were positive for FIG-ROS1. This may have clinical implications, since these patients will potentially benefit from the treatment with specific ROS1 inhibitors.


Subject(s)
Bile Duct Neoplasms/genetics , Carcinoma/pathology , Oncogene Proteins, Fusion/genetics , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Humans , Polymerase Chain Reaction , Sensitivity and Specificity
9.
BMC Cancer ; 14: 918, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25479910

ABSTRACT

BACKGROUND: Standard chemotherapy in unresectable biliary tract carcinoma (BTC) patients is based on gemcitabine combined with platinum derivatives. However, primary or acquired resistance is inevitable and no second-line chemotherapy is demonstrated to be effective. Thus, there is an urgent need to identify new alternative (chemo)therapy approaches. METHODS: We evaluated the mechanism of action of ET-743 in preclinical models of BTC. Six BTC cell lines (TFK-1, EGI-1, TGBC1, WITT, KMCH, HuH28), two primary cell cultures derived from BTC patients, the EGI-1 and a new established BTC patient-derived xenografts, were used as preclinical models to investigate the anti-tumor activity of ET-743 in vitro and in vivo. Gene expression profiling was also analyzed upon ET-743 treatment in in vivo models. RESULTS: We found that ET-743 inhibited cell growth of BTC cell lines and primary cultures (IC50 ranging from 0.37 to 3.08 nM) preferentially inducing apoptosis and activation of the complex DNA damage-repair proteins (p-ATM, p-p53 and p-Histone H2A.x) in vitro. In EGI-1 and patient-derived xenografts, ET-743 induced tumor growth delay and reduction of vasculogenesis. In vivo ET-743 induced a deregulation of genes involved in cell adhesion, stress-related response, and in pathways involved in cholangiocarcinogenesis, such as the IL-6, Sonic Hedgehog and Wnt signaling pathways. CONCLUSIONS: These results suggest that ET-743 could represent an alternative chemotherapy for BTC treatment and encourage the development of clinical trials in BTC patients resistant to standard chemotherapy.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Biliary Tract Neoplasms/drug therapy , Dioxoles/pharmacology , Tetrahydroisoquinolines/pharmacology , Animals , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Biliary Tract Neoplasms/blood supply , Biliary Tract Neoplasms/genetics , Cell Adhesion/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , DNA Repair/drug effects , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Histones/metabolism , Humans , Interleukin-6/genetics , Mice , Mice, Inbred NOD , Neovascularization, Pathologic/drug therapy , Phosphorylation , Trabectedin , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway/drug effects
10.
Hum Mutat ; 34(2): 330-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23292961

ABSTRACT

Cancer genomes display a complex blend of genetic lesions affecting oncogenes and tumor suppressor genes. Multiple modeling approaches indicate that 5-15 driver oncogenic events are required to achieve tumor progression in common epithelial cancers. In vitro, a lower number (2-3) of events is typically sufficient to achieve full transformation. We developed cellular models that closely resemble the occurrence of multiple genetic lesions to understand their role in tumor progression. Homologous recombination and transcriptional downregulation were used to recapitulate the co-occurrence of driver mutations targeting oncogenes and inactivation of tumor suppressor genes in human nontransformed epithelial cells. Knockdown of the tumor suppressor genes PTEN or RB1 was combined with mutagenic activation of individual oncogenes (EGFR, KRAS, BRAF, or PIK3CA), thus generating a combinatorial model. The simultaneous presence of oncogenic and tumor suppressive events resulted in distinct biochemical properties and anchorage-independent growth abilities. Notably, however, we found that even when up to four individual alterations were concomitantly present they were not sufficient to fully transform the target cells. Our results suggest that the close recapitulation of cancer lesions in not-transformed cells is essential to unveil their oncogenic potential and raise questions concerning the minimal requirements for neoplastic transformation of epithelial cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Class I Phosphatidylinositol 3-Kinases , Disease Models, Animal , Down-Regulation , Epithelial Cells/cytology , Epithelial Cells/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Knockdown Techniques , Genes, Tumor Suppressor , Genetic Vectors/genetics , Genome, Human , Humans , Lentivirus/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasms/pathology , Oncogenes/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras) , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , ras Proteins/genetics , ras Proteins/metabolism
11.
Mol Oncol ; 17(7): 1280-1301, 2023 07.
Article in English | MEDLINE | ID: mdl-36862005

ABSTRACT

In colorectal cancer, the mechanisms underlying tumor aggressiveness require further elucidation. Taking advantage of a large panel of human metastatic colorectal cancer xenografts and matched stem-like cell cultures (m-colospheres), here we show that the overexpression of microRNA 483-3p (miRNA-483-3p; also known as MIR-483-3p), encoded by a frequently amplified gene locus, confers an aggressive phenotype. In m-colospheres, endogenous or ectopic miRNA-483-3p overexpression increased proliferative response, invasiveness, stem cell frequency, and resistance to differentiation. Transcriptomic analyses and functional validation found that miRNA-483-3p directly targets NDRG1, known as a metastasis suppressor involved in EGFR family downregulation. Mechanistically, miRNA-483-3p overexpression induced the signaling pathway triggered by ERBB3, including AKT and GSK3ß, and led to the activation of transcription factors regulating epithelial-mesenchymal transition (EMT). Consistently, treatment with selective anti-ERBB3 antibodies counteracted the invasive growth of miRNA-483-3p-overexpressing m-colospheres. In human colorectal tumors, miRNA-483-3p expression inversely correlated with NDRG1 and directly correlated with EMT transcription factor expression and poor prognosis. These results unveil a previously unrecognized link between miRNA-483-3p, NDRG1, and ERBB3-AKT signaling that can directly support colorectal cancer invasion and is amenable to therapeutic targeting.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , MicroRNAs , Rectal Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Down-Regulation/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/pathology , Colonic Neoplasms/genetics , Transcription Factors/metabolism , Rectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Neoplasm Invasiveness/genetics
12.
Clin Cancer Res ; 29(6): 1102-1113, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36622698

ABSTRACT

PURPOSE: Approximately 20% of patients with RAS wild-type metastatic colorectal cancer (mCRC) experience objective responses to the anti-EGFR antibody cetuximab, but disease eradication is seldom achieved. The extent of tumor shrinkage correlates with long-term outcome. We aimed to find rational combinations that potentiate cetuximab efficacy by disrupting adaptive dependencies on antiapoptotic molecules (BCL2, BCL-XL, MCL1). EXPERIMENTAL DESIGN: Experiments were conducted in patient-derived xenografts (PDX) and organoids (PDXO). Apoptotic priming was analyzed by BH3 profiling. Proapoptotic and antiapoptotic protein complexes were evaluated by co-immunoprecipitation and electroluminescence sandwich assays. The effect of combination therapies was assessed by caspase activation in PDXOs and by monitoring PDX growth. RESULTS: A population trial in 314 PDX cohorts, established from as many patients, identified 46 models (14.6%) with appreciable (>50% tumor shrinkage) but incomplete response to cetuximab. From these models, 14 PDXOs were derived. Cetuximab primed cells for apoptosis, but only concomitant blockade of BCL-XL precipitated cell death. Mechanistically, exposure to cetuximab induced upregulation of the proapoptotic protein BIM and its sequestration by BCL-XL. Inhibition of BCL-XL resulted in displacement of BIM, which was not buffered by MCL1 and thereby became competent to induce apoptosis. In five PDX models, combination of cetuximab and a selective BCL-XL inhibitor triggered apoptosis and led to more pronounced tumor regressions and longer time to relapse after treatment discontinuation than cetuximab alone. CONCLUSIONS: In mCRC tumors that respond to cetuximab, antibody treatment confers a synthetic-lethal dependency on BCL-XL. Targeting this dependency unleashes apoptosis and increases the depth of response to cetuximab.


Subject(s)
Colonic Neoplasms , Neoplasm Recurrence, Local , Humans , Cetuximab/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Apoptosis Regulatory Proteins/metabolism , Apoptosis , bcl-X Protein/genetics , Proto-Oncogene Proteins c-bcl-2
13.
Front Oncol ; 13: 1130852, 2023.
Article in English | MEDLINE | ID: mdl-36816936

ABSTRACT

High-grade mucinous colorectal cancer (HGM CRC) is particularly aggressive, prone to metastasis and treatment resistance, frequently accompanied by "signet ring" cancer cells. A sizeable fraction of HGM CRCs (20-40%) arises in the context of the Lynch Syndrome, an autosomal hereditary syndrome that predisposes to microsatellite instable (MSI) CRC. Development of patient-derived preclinical models for this challenging subtype of colorectal cancer represents an unmet need in oncology. We describe here successful propagation of preclinical models from a case of early-onset, MSI-positive metastatic colorectal cancer in a male Lynch syndrome patient, refractory to standard care (FOLFOX6, FOLFIRI-Panitumumab) and, surprisingly, also to immunotherapy. Surgical material from a debulking operation was implanted in NOD/SCID mice, successfully yielding one patient-derived xenograft (PDX). PDX explants were subsequently used to generate 2D and 3D cell cultures. Histologically, all models resembled the tumor of origin, displaying a high-grade mucinous phenotype with signet ring cells. For preclinical exploration of alternative treatments, in light of recent findings, we considered inhibition of the proteasome by bortezomib and of the related NEDD8 pathway by pevonedistat. Indeed, sensitivity to bortezomib was observed in mucinous adenocarcinoma of the lung, and we previously found that HGM CRC is preferentially sensitive to pevonedistat in models with low or absent expression of cadherin 17 (CDH17), a differentiation marker. We therefore performed IHC on the tumor and models, and observed no CDH17 expression, suggesting sensitivity to pevonedistat. Both bortezomib and pevonedistat showed strong activity on 2D cells at 72 hours and on 3D organoids at 7 days, thus providing valid options for in vivo testing. Accordingly, three PDX cohorts were treated for four weeks, respectively with vehicle, bortezomib and pevonedistat. Both drugs significantly reduced tumor growth, as compared to the vehicle group. Interestingly, while bortezomib was more effective in vitro, pevonedistat was more effective in vivo. Drug efficacy was further substantiated by a reduction of cellularity and of Ki67-positive cells in the treated tumors. These results highlight proteasome and NEDD8 inhibition as potentially effective therapeutic approaches against Lynch syndrome-associated HGM CRC, also when the disease is refractory to all available treatment options.

14.
Int J Cancer ; 130(6): 1357-66, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-21500189

ABSTRACT

The MET oncogene is amplified in a fraction of human gastric carcinoma cell lines, with consequent overexpression and constitutive activation of the corresponding protein product, the Met tyrosine kinase receptor. This genetically driven hyperactivation of Met is necessary for cancer cell growth and survival, so that Met pharmacological blockade results in cell-cycle arrest or apoptosis (oncogene addiction). MET gene amplification also occurs in vivo in a number of human gastric carcinomas, and clinical trials are now ongoing to assess the therapeutic efficacy of Met inhibitors in this type of malignancy. The aim of our study was to identify a preclinical algorithm of soluble surrogate biomarkers indicative of response to Met inhibition in gastric tumors, as a potential tool to integrate imaging criteria during patient follow-up. We started from a survey of candidate molecules based on antibody proteomics and gene expression profiling; after ELISA validation and analytical quantification, four biomarkers were identified that appeared to be strongly and consistently modulated by Met inhibition in a panel of Met-addicted gastric carcinoma cell lines, but not in Met-independent cell lines. Pharmacologic blockade of Met using specific small-molecule inhibitors led to reduced secretion of IL-8, GROα and the soluble form of uPAR and to increased production of IL-6 both in vitro (in culture supernatants) and in vivo (in the plasma of xenografted mice). If confirmed in patients, this information might prove useful to monitor clinical response to Met-targeted therapies in MET-amplified gastric carcinomas.


Subject(s)
Biomarkers, Tumor/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Animals , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Cell Line, Tumor , Chemokine CXCL1/blood , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Female , Gene Expression Profiling , Humans , Indoles/pharmacology , Interleukin-6/blood , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/blood , Interleukin-8/genetics , Interleukin-8/metabolism , Mannose-Binding Lectins/blood , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Membrane Glycoproteins/blood , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Nude , Proteomics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Receptors, Cell Surface/blood , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Stomach Neoplasms/blood , Stomach Neoplasms/genetics , Sulfones/pharmacology , Xenograft Model Antitumor Assays
15.
ScientificWorldJournal ; 2012: 252034, 2012.
Article in English | MEDLINE | ID: mdl-22919300

ABSTRACT

Myoepithelium is present in canine mammary tumors as resting and proliferative suprabasal and spindle and stellate interstitial cells. The aim of this paper was to evaluate a panel of markers for the identification of four different myoepithelial cell morphological types in the normal and neoplastic mammary gland and to investigate immunohistochemical changes from an epithelial to a mesenchymal phenotype. Cytokeratin 19 (CK19), cytokeratin 5/6 (CK5/6), cytokeratin 14 (CK14), estrogen receptor (ER), p63 protein, vimentin (VIM), and α-smooth muscle actin (Alpha-SMA) antibodies were used on 29 neoplasms (3 benign and 3 malignant myoepithelial tumors, 7 carcinomas in benign-mixed tumors and 16 complex carcinomas) and on normal tissue of mammary glands. All these antibodies were also tested on 3 mammary tissues from animals with no mammary pathology. The myoepithelial markers were well expressed in the suprabasal cells and gradually lost in the motile types, with the stellate cells maintaining only VIM expression typical of mesenchyma. ER labeled some resting and motile myoepithelial cells. On the basis of our results, we propose a transition from myoepithelial immotile cells into migratory fibroblast-like cells. This transition and the characterization of an immunohistochemical panel for resting and motile myoepithelial cells shed more light on the biological behavior of myoepithelial cells.


Subject(s)
Muscles/cytology , Animals , Dogs , Epithelial Cells/cytology , Female , Immunohistochemistry
16.
Nat Cell Biol ; 23(4): 377-390, 2021 04.
Article in English | MEDLINE | ID: mdl-33795873

ABSTRACT

Direct targeting of the downstream mitogen-activated protein kinase (MAPK) pathway to suppress extracellular-regulated kinase (ERK) activation in KRAS and BRAF mutant colorectal cancer (CRC) has proven clinically unsuccessful, but promising results have been obtained with combination therapies including epidermal growth factor receptor (EGFR) inhibition. To elucidate the interplay between EGF signalling and ERK activation in tumours, we used patient-derived organoids (PDOs) from KRAS and BRAF mutant CRCs. PDOs resemble in vivo tumours, model treatment response and are compatible with live-cell microscopy. We established real-time, quantitative drug response assessment in PDOs with single-cell resolution, using our improved fluorescence resonance energy transfer (FRET)-based ERK biosensor EKAREN5. We show that oncogene-driven signalling is strikingly limited without EGFR activity and insufficient to sustain full proliferative potential. In PDOs and in vivo, upstream EGFR activity rigorously amplifies signal transduction efficiency in KRAS or BRAF mutant MAPK pathways. Our data provide a mechanistic understanding of the effectivity of EGFR inhibitors within combination therapies against KRAS and BRAF mutant CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , Organoids/metabolism , Organoids/pathology , Single-Cell Analysis
17.
Clin Cancer Res ; 27(21): 5979-5992, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34426441

ABSTRACT

PURPOSE: Regorafenib (REG) is approved for the treatment of metastatic colorectal cancer, but has modest survival benefit and associated toxicities. Robust predictive/early response biomarkers to aid patient stratification are outstanding. We have exploited biological pathway analyses in a patient-derived xenograft (PDX) trial to study REG response mechanisms and elucidate putative biomarkers. EXPERIMENTAL DESIGN: Molecularly subtyped PDXs were annotated for REG response. Subtyping was based on gene expression (CMS, consensus molecular subtype) and copy-number alteration (CNA). Baseline tumor vascularization, apoptosis, and proliferation signatures were studied to identify predictive biomarkers within subtypes. Phospho-proteomic analysis was used to identify novel classifiers. Supervised RNA sequencing analysis was performed on PDXs that progressed, or did not progress, following REG treatment. RESULTS: Improved REG response was observed in CMS4, although intra-subtype response was variable. Tumor vascularity did not correlate with outcome. In CMS4 tumors, reduced proliferation and higher sensitivity to apoptosis at baseline correlated with response. Reverse phase protein array (RPPA) analysis revealed 4 phospho-proteomic clusters, one of which was enriched with non-progressor models. A classification decision tree trained on RPPA- and CMS-based assignments discriminated non-progressors from progressors with 92% overall accuracy (97% sensitivity, 67% specificity). Supervised RNA sequencing revealed that higher basal EPHA2 expression is associated with REG resistance. CONCLUSIONS: Subtype classification systems represent canonical "termini a quo" (starting points) to support REG biomarker identification, and provide a platform to identify resistance mechanisms and novel contexts of vulnerability. Incorporating functional characterization of biological systems may optimize the biomarker identification process for multitargeted kinase inhibitors.


Subject(s)
Colorectal Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Pyridines/therapeutic use , Xenograft Model Antitumor Assays , Animals , Biomarkers, Tumor , Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Disease Models, Animal , Mice , Treatment Outcome
18.
BMC Vet Res ; 6: 5, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20109214

ABSTRACT

BACKGROUND: Human breast cancer is classified by gene expression profile into subtypes consisting of two hormone (oestrogen and/or progesterone) receptor-positive types (luminal-like A and luminal-like B) and three hormone receptor-negative types [human epidermal growth factor receptor 2-expressing, basal-like, and unclassified ("normal-like")]. Immunohistochemical surrogate panels are also proposed to potentially identify the molecular-based groups. The present study aimed to apply an immunohistochemical panel (anti-ER, -PR, -ERB-B2, -CK 5/6 and -CK14) in a series of canine malignant mammary tumours to verify the molecular-based classification, its correlation with invasion and grade, and its use as a prognostic aid in veterinary practice. RESULTS: Thirty-five tumours with luminal pattern (ER+ and PR+) were subgrouped into 13 A type and 22 B type, if ERB-B2 positive or negative. Most luminal-like A and basal-like tumours were grade 1 carcinomas, while the percentage of luminal B tumours was higher in grades 2 and 3 (Pearson Chi-square P = 0.009). No difference in the percentage of molecular subtypes was found between simple and complex/mixed carcinomas (Pearson Chi-square P = 0.47). No significant results were obtained by survival analysis, even if basal-like tumours had a more favourable prognosis than luminal-like lesions. CONCLUSION: The panel of antibodies identified only three tumour groups (luminal-like A and B, and basal-like) in the dog. Even though canine mammary tumours may be a model of human breast cancer, the existence of the same carcinoma molecular subtypes in women awaits confirmation. Canine mammary carcinomas show high molecular heterogeneity, which would benefit from a classification based on molecular differences. Stage and grade showed independent associations with survival in the multivariate regression, while molecular subtype grouping and histological type did not show associations. This suggests that caution should be used when applying this classification to the dog, in which invasion and grade supply the most important prognostic information.


Subject(s)
Biomarkers, Tumor/metabolism , Dog Diseases/diagnosis , Mammary Neoplasms, Animal/diagnosis , Animals , Dog Diseases/classification , Dogs , Female , Immunohistochemistry , Kaplan-Meier Estimate , Mammary Glands, Animal/pathology , Mammary Neoplasms, Animal/classification
19.
Sci Transl Med ; 12(532)2020 02 26.
Article in English | MEDLINE | ID: mdl-32102933

ABSTRACT

Vitamin C (VitC) is known to directly impair cancer cell growth in preclinical models, but there is little clinical evidence on its antitumoral efficacy. In addition, whether and how VitC modulates anticancer immune responses is mostly unknown. Here, we show that a fully competent immune system is required to maximize the antiproliferative effect of VitC in breast, colorectal, melanoma, and pancreatic murine tumors. High-dose VitC modulates infiltration of the tumor microenvironment by cells of the immune system and delays cancer growth in a T cell-dependent manner. VitC not only enhances the cytotoxic activity of adoptively transferred CD8 T cells but also cooperates with immune checkpoint therapy (ICT) in several cancer types. Combination of VitC and ICT can be curative in models of mismatch repair-deficient tumors with high mutational burden. This work provides a rationale for clinical trials combining ICT with high doses of VitC.


Subject(s)
Antineoplastic Agents , Melanoma , Animals , Antineoplastic Agents/pharmacology , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Immunotherapy , Mice , Tumor Microenvironment
20.
Sci Transl Med ; 12(555)2020 08 05.
Article in English | MEDLINE | ID: mdl-32759276

ABSTRACT

Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics. Compared with untreated tumors, these pseudodifferentiated tumor remnants had reduced expression of genes encoding EGFR-activating ligands, enhanced activity of human epidermal growth factor receptor 2 (HER2) and HER3, and persistent signaling along the phosphatidylinositol 3-kinase (PI3K) pathway. Clinically, properties of residual disease cells from the PDX models were detected in lingering tumors of responsive patients and in tumors of individuals who had experienced early recurrence. Mechanistically, residual tumor reprogramming after EGFR neutralization was mediated by inactivation of Yes-associated protein (YAP), a master regulator of intestinal epithelium recovery from injury. In preclinical trials, Pan-HER antibodies minimized residual disease, blunted PI3K signaling, and induced long-term tumor control after treatment discontinuation. We found that tolerance to EGFR inhibition is characterized by inactivation of an intrinsic lineage program that drives both regenerative signaling during intestinal repair and EGFR-dependent tumorigenesis. Thus, our results shed light on CRC lineage plasticity as an adaptive escape mechanism from EGFR-targeted therapy and suggest opportunities to preemptively target residual disease.


Subject(s)
Colorectal Neoplasms , Phosphatidylinositol 3-Kinases , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , ErbB Receptors , Humans , Neoplasm Recurrence, Local , Neoplasm, Residual , Paneth Cells , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL