Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Zoolog Sci ; 41(1): 60-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38587518

ABSTRACT

Ovarian follicle development is an essential process for continuation of sexually reproductive animals, and is controlled by a wide variety of regulatory factors such as neuropeptides and peptide hormones in the endocrine, neuroendocrine, and nervous systems. Moreover, while some molecular mechanisms underlying follicle development are conserved, others vary among species. Consequently, follicle development processes are closely related to the evolution and diversity of species. Ciona intestinalis type A (Ciona rubusta) is a cosmopolitan species of ascidians, which are the closest relative of vertebrates. However, unlike vertebrates, ascidians are not endowed with the hypothalamus-pituitary-gonadal axis involving pituitary gonadotropins and sexual steroids. Combined with the phylogenetic position of ascidians as the closest relative of vertebrates, such morphological and endocrine features suggest that ascidians possess both common and species-specific regulatory mechanisms in follicle development. To date, several neuropeptides have been shown to participate in the growth of vitellogenic follicles, oocyte maturation of postvitellogenic follicles, and ovulation of fully mature follicles in a developmental stage-specific fashion. Furthermore, recent studies have shed light on the evolutionary processes of follicle development throughout chordates. In this review, we provide an overview of the neuropeptidergic molecular mechanism in the premature follicle growth, oocyte maturation, and ovulation in Ciona, and comparative views of the follicle development processes of mammals and teleosts.


Subject(s)
Ciona intestinalis , Neuropeptides , Animals , Female , Phylogeny , Ovulation , Ovarian Follicle , Mammals
2.
Gen Comp Endocrinol ; 357: 114594, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047798

ABSTRACT

In recent years, new concepts have emerged regarding the nomenclature, functions, and relationships of different peptide families of the gonadotropin-releasing hormone (GnRH) superfamily. One of the main driving forces for this originated from the emerging evidence that neuropeptides previously called molluscan GnRH are multifunctional and should be classified as corazonin (CRZ). However, research articles still appear that use incorrect nomenclature and attribute the same function to molluscan CRZs as vertebrate GnRHs. The aim of the present study was to further support the recent interpretation of the origin and function of the GnRH superfamily. Towards this goal, we report the characterization of CRZ signaling system in the molluscan model species, the great pond snail (Lymnaea stagnalis). We detected a CRZ-receptor-like sequence (Lym-CRZR) by homology-searching in the Lymnaea transcriptomes and the deduced amino acid sequence showed high sequence similarity to GnRH receptors and CRZ receptors. Molecular phylogenetic tree analysis demonstrated that Lym-CRZR is included in the cluster of molluscan CRZRs. Lym-CRZR transiently transfected into HEK293 cells was found to be localized at the plasma membrane, confirming that it functions as a membrane receptor, like other G protein-coupled receptors. The signaling assays revealed that the previously identified Lym-CRZ neuropeptide stimulated intracellular Ca2+ mobilization in a dose-dependent manner, but not cyclic AMP production, in HEK293 cells transfected with Lym-CRZR. Finally, we demonstrated a wide tissue distribution of Lym-CRZR. These results suggest that Lym-CRZ is a multifunctional peptide and provide further insights into the evolution of the GnRH neuropeptide superfamily. The present study also supports the notion that previously termed molluscan "GnRH" should be classified as "CRZ".

3.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396656

ABSTRACT

A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino-acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 h resulted in 1.9- to 2.4-fold increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx) but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, which paves the way for research on the biological roles of hemocyte peptides in chordates.


Subject(s)
Ciona intestinalis , Animals , Ciona intestinalis/genetics , Hemocytes/metabolism , Peptides/metabolism , Pharynx , Immunity
4.
Mol Cell Endocrinol ; 582: 112122, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38109989

ABSTRACT

Deuterostome invertebrates, including echinoderms, hemichordates, cephalochordates, and urochordates, exhibit common and species-specific morphological, developmental, physiological, and behavioral characteristics that are regulated by neuroendocrine and nervous systems. Over the past 15 years, omics, genetic, and/or physiological studies on deuterostome invertebrates have identified low-molecular-weight transmitters, neuropeptides and their cognate receptors, and have clarified their various biological functions. In particular, there has been increasing interest on the neuroendocrine and nervous systems of Ciona intestinalis Type A, which belongs to the subphylum Urochordata and occupies the critical phylogenetic position as the closest relative of vertebrates. During the developmental stage, gamma-aminobutylic acid, D-serine, and gonadotropin-releasing hormones regulate metamorphosis of Ciona. In adults, the neuropeptidergic mechanisms underlying ovarian follicle growth, oocyte maturation, and ovulation have been elucidated. This review article provides the most recent and fundamental knowledge of the neuroendocrine and nervous systems of Ciona, and their evolutionary aspects.


Subject(s)
Ciona intestinalis , Animals , Female , Ciona intestinalis/genetics , Phylogeny , Vertebrates/genetics , Invertebrates , Neurosecretory Systems
5.
Gene ; 893: 147907, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37858745

ABSTRACT

Long noncoding RNAs (lncRNAs) have recently been proved to be functional in the testis. Tesra, a testis-specific lncRNA, was suggested to activate the transcription of Prss42/Tessp-2, a gene that is involved in meiotic progression, in mouse spermatocytes. To reveal the molecular mechanism underlying the activation, we searched for Tesra-binding proteins by a Ribotrap assay followed by LC-MS/MS analysis and identified polypyrimidine tract binding protein 2 (PTBP2) as a candidate. Analysis of public RNA-seq data and our qRT-PCR results indicated that Ptbp2 mRNA showed an expression pattern similar to the expression patterns of Tesra and Prss42/Tessp-2 during testis development. Moreover, PTBP2 was found to be associated with Tesra in testicular germ cells by RNA immunoprecipitation. To evaluate the effect of PTBP2 on the Prss42/Tessp-2 promoter, we established an in vitro reporter gene assay system in which Tesra expression could be induced by the Tet-on system and thereby Prss42/Tessp-2 promoter activity could be increased. In this system, the Prss42/Tessp-2 promoter activity was significantly decreased by the knockdown of PTBP2. These results suggest that PTBP2 contributes to Prss42/Tessp-2 transcriptional activation by Tesra in spermatocytes. The finding provides a precious example of a molecular mechanism of testis lncRNA functioning in spermatogenesis.


Subject(s)
RNA, Long Noncoding , Testis , Male , Mice , Animals , Testis/metabolism , RNA, Long Noncoding/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Spermatogenesis/physiology , Spermatocytes/metabolism
6.
Sci Rep ; 14(1): 6277, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491056

ABSTRACT

The cholecystokinin (CCK)/gastrin family peptides are involved in regulation of feeding and digestion in vertebrates. In the ascidian Ciona intestinalis type A (Ciona robusta), cionin, a CCK/gastrin family peptide, has been identified. Cionin is expressed exclusively in the central nervous system (CNS). In contrast, cionin receptor expression has been detected in the CNS, digestive tract, and ovary. Although cionin has been reported to be involved in ovulation, its physiological function in the CNS remains to be investigated. To elucidate its neural function, in the present study, we analyzed the expression of cionin and cionin receptors in the CNS. Cionin was expressed mainly in neurons residing in the anterior region of the cerebral ganglion. In contrast, the gene expressin of the cionin receptor gene CioR1, was detected in the middle part of the cerebral ganglion and showed a similar expression pattern to that of VACHT, a cholinergic neuron marker gene. Moreover, CioR1 was found to be expressed in cholinergic neurons. Consequently, these results suggest that cionin interacts with cholinergic neurons as a neurotransmitter or neuromodulator via CioR1. This study provides insights into a biological role of a CCK/gastrin family peptide in the CNS of ascidians.


Subject(s)
Cholecystokinin , Ciona intestinalis , Neuropeptides , Animals , Female , Cholecystokinin/genetics , Cholecystokinin/metabolism , Gastrins , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , Amino Acid Sequence , Central Nervous System
SELECTION OF CITATIONS
SEARCH DETAIL