ABSTRACT
The relationship between the Programmed Death-Ligand 1 (PD-L1)/Programmed Death-1 (PD-1) pathway, lung inflammation, and clinical outcomes in acute respiratory distress syndrome (ARDS) is poorly understood. We sought to determine whether PD-L1/PD-1 in the lung or blood is associated with ARDS and associated severity. We measured soluble PD-L1 (sPD-L1) in plasma and lower respiratory tract samples (ARDS1 (n = 59) and ARDS2 (n = 78)) or plasma samples alone (ARDS3 (n = 149)) collected from subjects with ARDS and tested for associations with mortality using multiple regression. We used mass cytometry to measure PD-L1/PD-1 expression and intracellular cytokine staining in cells isolated from bronchoalveolar lavage fluid (BALF) (n = 18) and blood (n = 16) from critically-ill subjects with or without ARDS enrolled from a fourth cohort. Higher plasma levels of sPD-L1 were associated with mortality in ARDS1, ARDS2, and ARDS3. In contrast, higher levels of sPD-L1 in the lung were either not associated with mortality (ARDS2) or were associated with survival (ARDS1). Alveolar PD-1POS T cells had more intracellular cytokine staining compared with PD-1NEG T cells. Subjects without ARDS had a higher ratio of PD-L1POS alveolar macrophages to PD-1POS T cells compared with subjects with ARDS. We conclude that sPD-L1 may have divergent cellular sources and/or functions in the alveolar vs. blood compartments given distinct associations with mortality. Alveolar leukocyte subsets defined by PD-L1/PD-1 cell-surface expression have distinct cytokine secretion profiles, and the relative proportions of these subsets are associated with ARDS.
ABSTRACT
OBJECTIVES: Improving the efficiency of clinical trials in acute hypoxemic respiratory failure (HRF) depends on enrichment strategies that minimize enrollment of patients who quickly resolve with existing care and focus on patients at high risk for persistent HRF. We aimed to develop parsimonious models predicting risk of persistent HRF using routine data from ICU admission and select research immune biomarkers. DESIGN: Prospective cohorts for derivation ( n = 630) and external validation ( n = 511). SETTING: Medical and surgical ICUs at two U.S. medical centers. PATIENTS: Adults with acute HRF defined as new invasive mechanical ventilation (IMV) and hypoxemia on the first calendar day after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We evaluated discrimination, calibration, and practical utility of models predicting persistent HRF risk (defined as ongoing IMV and hypoxemia on the third calendar day after admission): 1) a clinical model with least absolute shrinkage and selection operator (LASSO) selecting Pa o2 /F io2 , vasopressors, mean arterial pressure, bicarbonate, and acute respiratory distress syndrome as predictors; 2) a model adding interleukin-6 (IL-6) to clinical predictors; and 3) a comparator model with Pa o2 /F io2 alone, representing an existing strategy for enrichment. Forty-nine percent and 69% of patients had persistent HRF in derivation and validation sets, respectively. In validation, both LASSO (area under the receiver operating characteristic curve, 0.68; 95% CI, 0.64-0.73) and LASSO + IL-6 (0.71; 95% CI, 0.66-0.76) models had better discrimination than Pa o2 /F io2 (0.64; 95% CI, 0.59-0.69). Both models underestimated risk in lower risk deciles, but exhibited better calibration at relevant risk thresholds. Evaluating practical utility, both LASSO and LASSO + IL-6 models exhibited greater net benefit in decision curve analysis, and greater sample size savings in enrichment analysis, compared with Pa o2 /F io2 . The added utility of LASSO + IL-6 model over LASSO was modest. CONCLUSIONS: Parsimonious, interpretable models that predict persistent HRF may improve enrichment of trials testing HRF-targeted therapies and warrant future validation.
Subject(s)
Interleukin-6 , Respiratory Insufficiency , Adult , Humans , Prospective Studies , Respiratory Insufficiency/therapy , Hypoxia/therapy , Intensive Care UnitsABSTRACT
OBJECTIVES: We sought to determine whether hyperinflammatory acute respiratory distress syndrome (ARDS) and hypoinflammatory ARDS, which have been associated with differences in plasma biomarkers and mortality risk, also display differences in bronchoalveolar lavage (BALF) biomarker profiles. We then described the relationship between hyperinflammatory ARDS and hypoinflammatory ARDS to novel subphenotypes derived using BALF biomarkers. DESIGN: Secondary analysis of a randomized control trial testing omega-3 fatty acids for the treatment of ARDS. SETTING: Five North American intensive care units. PATIENTS: Adults (n = 88) on invasive mechanical ventilation within 48 hours of ARDS onset. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We classified 57 patients as hypoinflammatory and 31 patients as hyperinflammatory using a previously validated logistic regression model. Of 14 BALF biomarkers analyzed, interleukin-6 and granulocyte colony stimulating factor were higher among patients with hyperinflammatory ARDS compared with hypoinflammatory ARDS, though the differences were not robust to multiple hypothesis testing. We then performed a de novo latent class analysis of the 14 BALF biomarkers to identify two classes well separated by alveolar profiles. Class 2 (n = 63) displayed significantly higher interleukin-6, von Willebrand factor, soluble programmed cell death receptor-1, % neutrophils, and other biomarkers of inflammation compared with class 1 (n = 25). These BALF-derived classes had minimal overlap with the plasma-derived hyperinflammatory and hypoinflammatory classes, and the majority of both plasma-derived classes were in BALF-derived class 2 and characterized by high BALF biomarkers. Additionally, the BALF-derived classes were associated with clinical severity of pulmonary disease, with class 2 exhibiting lower Pao2 to Fio2 and distinct ventilatory parameters, unlike the plasma-derived classes, which were only related to nonpulmonary organ dysfunction. CONCLUSIONS: Hyperinflammatory and hypoinflammatory ARDS subphenotypes did not display significant differences in alveolar biologic profiles. Identifying ARDS subgroups using BALF measurements is a unique approach that complements information obtained from plasma, with potential to inform enrichment strategies in trials of lung-targeted therapies.
Subject(s)
Interleukin-6 , Respiratory Distress Syndrome , Adult , Humans , Respiratory Distress Syndrome/therapy , Biomarkers , Bronchoalveolar Lavage Fluid , NeutrophilsABSTRACT
BACKGROUND: Evolving ARDS epidemiology and management during COVID-19 have prompted calls to reexamine the construct validity of Berlin criteria, which have been rarely evaluated in real-world data. We developed a Berlin ARDS definition (EHR-Berlin) computable in electronic health records (EHR) to (1) assess its construct validity, and (2) assess how expanding its criteria affected validity. METHODS: We performed a retrospective cohort study at two tertiary care hospitals with one EHR, among adults hospitalized with COVID-19 February 2020-March 2021. We assessed five candidate definitions for ARDS: the EHR-Berlin definition modeled on Berlin criteria, and four alternatives informed by recent proposals to expand criteria and include patients on high-flow oxygen (EHR-Alternative 1), relax imaging criteria (EHR-Alternatives 2-3), and extend timing windows (EHR-Alternative 4). We evaluated two aspects of construct validity for the EHR-Berlin definition: (1) criterion validity: agreement with manual ARDS classification by experts, available in 175 patients; (2) predictive validity: relationships with hospital mortality, assessed by Pearson r and by area under the receiver operating curve (AUROC). We assessed predictive validity and timing of identification of EHR-Berlin definition compared to alternative definitions. RESULTS: Among 765 patients, mean (SD) age was 57 (18) years and 471 (62%) were male. The EHR-Berlin definition classified 171 (22%) patients as ARDS, which had high agreement with manual classification (kappa 0.85), and was associated with mortality (Pearson r = 0.39; AUROC 0.72, 95% CI 0.68, 0.77). In comparison, EHR-Alternative 1 classified 219 (29%) patients as ARDS, maintained similar relationships to mortality (r = 0.40; AUROC 0.74, 95% CI 0.70, 0.79, Delong test P = 0.14), and identified patients earlier in their hospitalization (median 13 vs. 15 h from admission, Wilcoxon signed-rank test P < 0.001). EHR-Alternative 3, which removed imaging criteria, had similar correlation (r = 0.41) but better discrimination for mortality (AUROC 0.76, 95% CI 0.72, 0.80; P = 0.036), and identified patients median 2 h (P < 0.001) from admission. CONCLUSIONS: The EHR-Berlin definition can enable ARDS identification with high criterion validity, supporting large-scale study and surveillance. There are opportunities to expand the Berlin criteria that preserve predictive validity and facilitate earlier identification.
Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Male , Adult , Middle Aged , Female , Retrospective Studies , Electronic Health Records , COVID-19/diagnosis , Respiratory Distress Syndrome/diagnosis , Risk AssessmentABSTRACT
Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.
Subject(s)
COVID-19 , Respiratory Insufficiency , B7-H1 Antigen , Chemokines , Critical Illness , Humans , Prospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alphaABSTRACT
BACKGROUND: Acute hypoxemic respiratory failure (HRF) is associated with high morbidity and mortality, but its heterogeneity challenges the identification of effective therapies. Defining subphenotypes with distinct prognoses or biologic features can improve therapeutic trials, but prior work has focused on ARDS, which excludes many acute HRF patients. We aimed to characterize persistent and resolving subphenotypes in the broader HRF population. METHODS: In this secondary analysis of 2 independent prospective ICU cohorts, we included adults with acute HRF, defined by invasive mechanical ventilation and PaO2-to-FIO2 ratio ≤ 300 on cohort enrollment (n = 768 in the discovery cohort and n = 1715 in the validation cohort). We classified patients as persistent HRF if still requiring mechanical ventilation with PaO2-to-FIO2 ratio ≤ 300 on day 3 following ICU admission, or resolving HRF if otherwise. We estimated relative risk of 28-day hospital mortality associated with persistent HRF, compared to resolving HRF, using generalized linear models. We also estimated fold difference in circulating biomarkers of inflammation and endothelial activation on cohort enrollment among persistent HRF compared to resolving HRF. Finally, we stratified our analyses by ARDS to understand whether this was driving differences between persistent and resolving HRF. RESULTS: Over 50% developed persistent HRF in both the discovery (n = 386) and validation (n = 1032) cohorts. Persistent HRF was associated with higher risk of death relative to resolving HRF in both the discovery (1.68-fold, 95% CI 1.11, 2.54) and validation cohorts (1.93-fold, 95% CI 1.50, 2.47), after adjustment for age, sex, chronic respiratory illness, and acute illness severity on enrollment (APACHE-III in discovery, APACHE-II in validation). Patients with persistent HRF displayed higher biomarkers of inflammation (interleukin-6, interleukin-8) and endothelial dysfunction (angiopoietin-2) than resolving HRF after adjustment. Only half of persistent HRF patients had ARDS, yet exhibited higher mortality and biomarkers than resolving HRF regardless of whether they qualified for ARDS. CONCLUSION: Patients with persistent HRF are common and have higher mortality and elevated circulating markers of lung injury compared to resolving HRF, and yet only a subset are captured by ARDS definitions. Persistent HRF may represent a clinically important, inclusive target for future therapeutic trials in HRF.
Subject(s)
Mortality/trends , Phenotype , Respiratory Insufficiency/classification , APACHE , Biomarkers/analysis , Cohort Studies , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Prognosis , Prospective Studies , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/mortalityABSTRACT
BACKGROUND: Analyses of blood biomarkers involved in the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection can reveal distinct biological pathways and inform development and testing of therapeutics for COVID-19. Our objective was to evaluate host endothelial, epithelial and inflammatory biomarkers in COVID-19. METHODS: We prospectively enrolled 171 ICU patients, including 78 (46%) patients positive and 93 (54%) negative for SARS-CoV-2 infection from April to September, 2020. We compared 22 plasma biomarkers in blood collected within 24 h and 3 days after ICU admission. RESULTS: In critically ill COVID-19 and non-COVID-19 patients, the most common ICU admission diagnoses were respiratory failure or pneumonia, followed by sepsis and other diagnoses. Similar proportions of patients in both groups received invasive mechanical ventilation at the time of study enrollment. COVID-19 and non-COVID-19 patients had similar rates of acute respiratory distress syndrome, severe acute kidney injury, and in-hospital mortality. While concentrations of interleukin 6 and 8 were not different between groups, markers of epithelial cell injury (soluble receptor for advanced glycation end products, sRAGE) and acute phase proteins (serum amyloid A, SAA) were significantly higher in COVID-19 compared to non-COVID-19, adjusting for demographics and APACHE III scores. In contrast, angiopoietin 2:1 (Ang-2:1 ratio) and soluble tumor necrosis factor receptor 1 (sTNFR-1), markers of endothelial dysfunction and inflammation, were significantly lower in COVID-19 (p < 0.002). Ang-2:1 ratio and SAA were associated with mortality only in non-COVID-19 patients. CONCLUSIONS: These studies demonstrate that, unlike other well-studied causes of critical illness, endothelial dysfunction may not be characteristic of severe COVID-19 early after ICU admission. Pathways resulting in elaboration of acute phase proteins and inducing epithelial cell injury may be promising targets for therapeutics in COVID-19.
Subject(s)
COVID-19/blood , Endothelial Cells/virology , Epithelial Cells/virology , Host Microbial Interactions , Inflammation/virology , Adult , Aged , Biomarkers/blood , COVID-19/epidemiology , COVID-19/therapy , Case-Control Studies , Female , Humans , Inflammation/blood , Intensive Care Units , Male , Middle Aged , Prospective StudiesABSTRACT
BACKGROUND: Quality improvement collaboratives (QICs) support rapid testing and implementation of interventions through the collective experience of participating organizations to improve care quality and reduce costs. Although QICs have been societally cost-effective in improving the care of chronic diseases, they may not be adopted by outpatient clinics if their costs are high. Diabetes QICs warrant reexamination as secular trends in the quality of diabetes care, new care guidelines for diabetes, and evolving strategies for quality improvement may have altered implementation costs. METHODS: The costs over the first four years-from June 2009 through May 2013-of an ongoing diabetes QIC were characterized by activities and over time. The QIC, linking six clinics on Chicago's South Side, tailored interventions to minority populations and built community partnerships. Costs were calculated from clinic surveys regarding activities, labor, and purchases. RESULTS: Data were obtained from five of the six participating clinics. Cost/diabetic patient/year ranged across clinic sites from $6 (largest clinic) to $68 (smallest clinic). Clinics spent 62%-88% of their total QIC costs on labor. The cost/diabetic patient/year changed over time from Year 1 (range across clinics, $5-$51), Year 2 ($11-$84), Year 3 ($4-$57), to Year 4 ($4-$80), with costs peaking at Year 2 for all clinics except Clinic 4, where costs peaked at Year 4. DISCUSSION: Cost experiences of QICs in clinics were di- verse over time and setting. High per-patient costs may stem from small clinic size, a sicker patient population, and variation in personnel type used. Cost decreases over time may represent increasing organizational learning and efficiency. Sharing resources may have achieved additional cost savings. This practical information can help administrators and policy makers predict, manage, and support costs of QICs as payers increasingly seek high-value health care.
Subject(s)
Ambulatory Care Facilities/economics , Diabetes Mellitus/prevention & control , Quality Improvement/economics , Chicago , Cooperative Behavior , Costs and Cost Analysis , Health Services Research , Humans , Longitudinal Studies , Organizational Culture , United StatesABSTRACT
The kidney tubules constitute two-thirds of the cells of the kidney and account for the majority of the organ's metabolic energy expenditure. Acute tubular injury (ATI) is observed across various types of kidney diseases and may significantly contribute to progression to kidney failure. Non-invasive biomarkers of ATI may allow for early detection and drug development. Using the SomaScan proteomics platform on 434 patients with biopsy-confirmed kidney disease, we here identify plasma biomarkers associated with ATI severity. We employ regional transcriptomics and proteomics, single-cell RNA sequencing, and pathway analysis to explore biomarker protein and gene expression and enriched biological pathways. Additionally, we examine ATI biomarker associations with acute kidney injury (AKI) in the Kidney Precision Medicine Project (KPMP) (n = 44), the Atherosclerosis Risk in Communities (ARIC) study (n = 4610), and the COVID-19 Host Response and Clinical Outcomes (CHROME) study (n = 268). Our findings indicate 156 plasma proteins significantly linked to ATI with osteopontin, macrophage mannose receptor 1, and tenascin C showing the strongest associations. Pathway analysis highlight immune regulation and organelle stress responses in ATI pathogenesis.
Subject(s)
Acute Kidney Injury , Biomarkers , COVID-19 , Osteopontin , Proteomics , Humans , Acute Kidney Injury/blood , Proteomics/methods , Male , Biomarkers/blood , Female , Middle Aged , COVID-19/blood , Osteopontin/blood , Tenascin/blood , Tenascin/genetics , Tenascin/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Aged , Adult , SARS-CoV-2 , Single-Cell Analysis , Blood Proteins/metabolismABSTRACT
Kidney and lung injury are closely inter-related during acute respiratory illness, but the molecular risk factors that these organ injuries share are not well defined. OBJECTIVES: We identified plasma biomarkers associated with severe acute kidney injury (AKI) during acute respiratory illness, and compared them to biomarkers associated with severe acute respiratory failure (ARF). DESIGN SETTINGS AND PARTICIPANTS: Prospective observational cohort study enrolling March 2020 through May 2021, at three hospitals in a large academic health system. We analyzed 301 patients admitted to an ICU with acute respiratory illness. MAIN OUTCOMES AND MEASURES: Outcomes were ascertained between ICU admission and day 14, and included: 1) severe AKI, defined as doubling of serum creatinine or new dialysis and 2) severe ARF, which included new or persistent need for high-flow oxygen or mechanical ventilation. We measured biomarkers of immune response and endothelial function, pathways related to adverse kidney and lung outcomes, in plasma collected within 24 hours of ICU admission. Severe AKI occurred in 48 (16%), severe ARF occurred in 147 (49%), and 40 (13%) patients experienced both. Two-fold higher concentrations of soluble tumor necrosis factor receptor-1 (sTNFR-1) (adjusted relative risk [aRR], 1.56; 95% CI, 1.24-1.96) and soluble triggering receptor on myeloid cells-1 (sTREM-1) (aRR, 1.85; 95% CI, 1.42-2.41), biomarkers of innate immune activation, were associated with higher risk for severe AKI after adjustment for age, sex, COVID-19, and Acute Physiology and Chronic Health Evaluation-III. These biomarkers were not significantly associated with severe ARF. Soluble programmed cell death receptor-1 (sPDL-1), a checkpoint pathway molecule, as well as soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular adhesion molecule-1 (sVCAM-1), molecules involved with endothelial-vascular leukocyte adhesion, were associated with both severe AKI and ARF. CONCLUSIONS AND RELEVANCE: sTNFR-1 and sTREM-1 were linked strongly to severe AKI during respiratory illness, while sPDL-1, sICAM-1 and sVCAM-1 were associated with both severe AKI and ARF. These biomarker signatures may shed light on pathophysiology of lung-kidney interactions, and inform precision medicine strategies for identifying patients at high risk for these organ injuries.
ABSTRACT
Importance: It is not clear which severely injured patients with hemorrhagic shock may benefit most from a 1:1:1 vs 1:1:2 (plasma:platelets:red blood cells) resuscitation strategy. Identification of trauma molecular endotypes may reveal subgroups of patients with differential treatment response to various resuscitation strategies. Objective: To derive trauma endotypes (TEs) from molecular data and determine whether these endotypes are associated with mortality and differential treatment response to 1:1:1 vs 1:1:2 resuscitation strategies. Design, Setting, and Participants: This was a secondary analysis of the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) randomized clinical trial. The study cohort included individuals with severe injury from 12 North American trauma centers. The cohort was taken from the participants in the PROPPR trial who had complete plasma biomarker data available. Study data were analyzed on August 2, 2021, to October 25, 2022. Exposures: TEs identified by K-means clustering of plasma biomarkers collected at hospital arrival. Main Outcomes and Measures: An association between TEs and 30-day mortality was tested using multivariable relative risk (RR) regression adjusting for age, sex, trauma center, mechanism of injury, and injury severity score (ISS). Differential treatment response to transfusion strategy was assessed using an RR regression model for 30-day mortality by incorporating an interaction term for the product of endotype and treatment group adjusting for age, sex, trauma center, mechanism of injury, and ISS. Results: A total of 478 participants (median [IQR] age, 34.5 [25-51] years; 384 male [80%]) of the 680 participants in the PROPPR trial were included in this study analysis. A 2-class model that had optimal performance in K-means clustering was found. TE-1 (n = 270) was characterized by higher plasma concentrations of inflammatory biomarkers (eg, interleukin 8 and tumor necrosis factor α) and significantly higher 30-day mortality compared with TE-2 (n = 208). There was a significant interaction between treatment arm and TE for 30-day mortality. Mortality in TE-1 was 28.6% with 1:1:2 treatment vs 32.6% with 1:1:1 treatment, whereas mortality in TE-2 was 24.5% with 1:1:2 treatment vs 7.3% with 1:1:1 treatment (P for interaction = .001). Conclusions and Relevance: Results of this secondary analysis suggest that endotypes derived from plasma biomarkers in trauma patients at hospital arrival were associated with a differential response to 1:1:1 vs 1:1:2 resuscitation strategies in trauma patients with severe injury. These findings support the concept of molecular heterogeneity in critically ill trauma populations and have implications for tailoring therapy for patients at high risk for adverse outcomes.
Subject(s)
Hemostatics , Shock, Hemorrhagic , Humans , Male , Adult , Blood Transfusion , Resuscitation/methods , Shock, Hemorrhagic/therapy , Injury Severity ScoreABSTRACT
Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log2 increase, 1.53; 95% CI, 1.17-2.00; p = 0.002). Higher ANGPTL4 concentrations were also associated with higher proportions of venous thromboembolism and acute respiratory distress syndrome. Longitudinal ANGPTL4 concentrations were significantly different during the first 2 weeks of hospitalization in patients who subsequently died compared with survivors (p for interaction = 8.1 × 10-5). Proteomics analysis demonstrated abundance of ANGPTL4 in lung tissue compared with other organs in COVID-19. ANGPTL4 single-nuclear RNA gene expression was significantly increased in pulmonary alveolar type 2 epithelial cells and fibroblasts in COVID-19 lung tissue compared with controls. CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients.
ABSTRACT
BACKGROUND: Innate immune dysregulation may contribute to age-related differences in outcomes among critically ill adults. Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is an important innate immune marker with prognostic value in sepsis, but age-related differences have not been studied. METHODS: This was a prospective cohort from a large tertiary care hospital enrolling adults from both medical and trauma-surgical intensive care units (ICUs). Plasma sTREM-1 was measured in participants within 24âh of ICU admission. We analyzed associations between age (≤50 and >50âyears) and sTREM-1 using linear regression. We then examined associations between sTREM-1 and both 28-day mortality and persistent organ dysfunction (defined as need for dialysis, vasopressors, or invasive mechanical ventilation) 7âdays following admission using relative risk regression. RESULTS: Of 231 critically ill adults, older patients (nâ=â122) had higher prevalence of chronic disease and sepsis on enrollment than younger patients, but acute illness severity was similar. Age over 50 was associated with 27% higher sTREM-1 concentrations (95% CI 6%-53%), adjusted for sex and Charlson comorbidity index (CCI). Two-fold higher sTREM-1 was associated with 2.42-fold higher risk for mortality (95% CI 1.57, 3.73) and 1.86-fold higher risk for persistent organ dysfunction (95% CI 1.45, 2.39), adjusted for sex, CCI, and age. CONCLUSIONS: sTREM-1 was elevated among critically ill older adults, and strongly associated with both death and persistent organ dysfunction. Immune responses associated with sTREM-1 may contribute to age-related differences in ICU outcomes, warranting further study as a potential therapeutic target in older adults.
Subject(s)
Sepsis/blood , Sepsis/immunology , Triggering Receptor Expressed on Myeloid Cells-1/blood , Adult , Age Factors , Aged , Cohort Studies , Critical Illness , Female , Humans , Male , Middle Aged , Prospective Studies , Triggering Receptor Expressed on Myeloid Cells-1/physiologyABSTRACT
To identify and characterize clinical decline after completion of dexamethasone in severe COVID-19 and determine whether interleukin (IL)-6 and other inflammatory biomarkers predict the occurrence of clinical decline. DESIGN: Prospective observational cohort. SETTING: ICUs in three University of Washington affiliated hospitals between July 2020 and April 2021. PATIENTS: Patients admitted to an ICU with COVID-19 who completed a course of dexamethasone. MEASUREMENTS AND MAIN RESULTS: We identified 65 adult patients with severe COVID-19 who completed a 10-day course of dexamethasone, of whom 60 had plasma samples collected within 3 days of dexamethasone completion. We measured IL-6 with a clinical-grade electrochemiluminescent assay and a larger panel of inflammatory biomarkers (IL-8, Monocyte Chemoattractant Protein-1, Monocyte Inflammatory Protein-1 alpha, interferon gamma, C-X-C Motif Chemokine Ligand 10, WBC, bicarbonate) with a research immunoassay. We defined clinical decline by the occurrence of incident severe kidney injury, incident or escalating shock or fever, worsening hypoxemia, or death within 5 days of completion of dexamethasone. We estimated risk for clinical decline by standardized log2 transformed biomarker concentration using multivariable logistic regression. Clinical decline post-dexamethasone was common, occurring in 49% of patients (n = 32). Among all biomarkers, IL-6 levels were most strongly associated with clinical decline. After adjustment for age, sex, and study site, the odds of post-dexamethasone clinical decline were 7.33 times higher per one sd increase in log2 transformed IL-6 concentrations (adjusted odds ratio, 7.33; CI, 2.62-20.47; p < 0.001). The discriminatory power of IL-6 for clinical decline was high (cross-validated mean area under the receiver operating characteristic curve, 0.90; 95% CI, 0.79-0.95). CONCLUSIONS: Clinical decline after completion of dexamethasone for severe COVID-19 is common. IL-6 concentrations obtained prior to completion of dexamethasone may have utility in identifying those at highest risk for subsequent worsening. If validated, future work might test whether plasma IL-6 could be used as a tool for a personalized approach to duration of dexamethasone treatment in severe COVID-19.
ABSTRACT
PURPOSE: To describe evolution and severity of radiographic findings and assess association with disease severity and outcomes in critically ill COVID-19 patients. MATERIALS AND METHODS: This retrospective study included 62 COVID-19 patients admitted to the intensive care unit (ICU). Clinical data was obtained from electronic medical records. A total of 270 chest radiographs were reviewed and qualitatively scored (CXR score) using a severity scale of 0-30. Radiographic findings were correlated with clinical severity and outcome. RESULTS: The CXR score increases from a median initial score of 10 at hospital presentation to the median peak CXR score of 18 within a median time of 4 days after hospitalization, and then slowly decreases to a median last CXR score of 15 in a median time of 12 days after hospitalization. The initial and peak CXR score was independently associated with invasive MV after adjusting for age, gender, body mass index, smoking, and comorbidities (Initial, odds ratio [OR]: 2.11 per 5-point increase, confidence interval [CI] 1.35-3.32, P= 0.001; Peak, OR: 2.50 per 5-point increase, CI 1.48-4.22, P= 0.001). Peak CXR scores were also independently associated with vasopressor usage (OR: 2.28 per 5-point increase, CI 1.30-3.98, P= 0.004). Peak CXR scores strongly correlated with the duration of invasive MV (Rho = 0.62, P< 0.001), while the initial CXR score (Rho = 0.26) and the peak CXR score (Rho = 0.27) correlated weakly with the sequential organ failure assessment score. No statistically significant associations were found between radiographic findings and mortality. CONCLUSIONS: Evolution of radiographic features indicates rapid disease progression and correlate with requirement for invasive MV or vasopressors but not mortality, which suggests potential nonpulmonary pathways to death in COVID-19.
Subject(s)
COVID-19 , Critical Illness , Humans , Intensive Care Units , Retrospective Studies , Severity of Illness IndexABSTRACT
BACKGROUNDSerum creatinine concentrations (SCrs) are used to determine the presence and severity of acute kidney injury (AKI). SCr is primarily eliminated by glomerular filtration; however, most mechanisms of AKI in critical illness involve kidney proximal tubules, where tubular secretion occurs. Proximal tubular secretory clearance is not currently estimated in the intensive care unit (ICU). Our objective was to estimate the kidney clearance of secretory solutes in critically ill adults.METHODSWe collected matched blood and spot urine samples from 170 ICU patients and from a comparison group of 70 adults with normal kidney function. We measured 7 endogenously produced secretory solutes using liquid chromatography-tandem mass spectrometry. We computed a composite secretion score incorporating all 7 solutes and evaluated associations with 28-day major adverse kidney events (MAKE28), defined as doubling of SCr, dialysis dependence, or death.RESULTSThe urine-to-plasma ratios of 6 of 7 secretory solutes were lower in critically ill patients compared with healthy individuals after adjustment for SCr. The composite secretion score was moderately correlated with SCr and cystatin C (r = -0.51 and r = -0.53, respectively). Each SD higher composite secretion score was associated with a 25% lower risk of MAKE28 (95% CI 9% to 38% lower) independent of severity of illness, SCr, and tubular injury markers. Higher urine-to-plasma ratios of individual secretory solutes isovalerylglycine and tiglylglycine were associated with MAKE28 after accounting for multiple testing.CONCLUSIONAmong critically ill adults, tubular secretory clearance is associated with adverse outcomes, and its measurement could improve assessment of kidney function and dosing of essential ICU medications.FUNDINGGrants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK/NIH) K23DK116967, the University of Washington Diabetes Research Center P30DK017047, an unrestricted gift to the Kidney Research Institute from the Northwest Kidney Centers, and the Vanderbilt O'Brien Kidney Center (NIDDK 5P30 DK114809-03). The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.
Subject(s)
Acute Kidney Injury , Critical Illness , Kidney Tubules, Proximal , Acute Kidney Injury/blood , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/urine , Biomarkers/analysis , Biomarkers/metabolism , Creatinine/metabolism , Cystatin C/metabolism , Female , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/physiopathology , Male , Middle AgedABSTRACT
IMPORTANCE: In bacterial sepsis, CD14 and its N-terminal fragment (soluble CD14 subtype, "Presepsin") have been characterized as markers of innate immune responses and emerging evidence has linked both to coronavirus disease 2019 pathophysiology. OBJECTIVES: Our aim was to determine the relationship between the soluble form of CD14 and soluble CD14 subtype plasma levels, coronavirus disease 2019 status, and coronavirus disease 2019-related outcomes. DESIGN: A prospective cohort study. SETTING: ICUs in three tertiary hospitals in Seattle, WA. PARTICIPANTS: Two-hundred four critically ill patients under investigation for coronavirus disease 2019. MAIN OUTCOMES AND MEASURES: We measured plasma soluble CD14 and soluble CD14 subtype levels in samples collected upon admission. We tested for associations between biomarker levels and coronavirus disease 2019 status. We stratified by coronavirus disease 2019 status and tested for associations between biomarker levels and outcomes. RESULTS: Among 204 patients, 102 patients had coronavirus disease 2019 and 102 patients did not. In both groups, the most common ICU admission diagnosis was respiratory failure or pneumonia and proportions receiving respiratory support at admission were similar. In regression analyses adjusting for age, sex, race/ethnicity, steroid therapy, comorbidities, and severity of illness, soluble CD14 subtype was 54% lower in coronavirus disease 2019 than noncoronavirus disease 2019 patients (fold difference, 0.46; 95% CI, 0.28-0.77; p = 0.003). In contrast to soluble CD14 subtype, soluble CD14 levels did not differ between coronavirus disease 2019 and noncoronavirus disease 2019 patients. In both coronavirus disease 2019 and noncoronavirus disease 2019, in analyses adjusting for age, sex, race/ethnicity, steroid therapy, and comorbidities, higher soluble CD14 subtype levels were associated with death (coronavirus disease 2019: adjusted relative risk, 1.21; 95% CI, 1.06-1.39; p = 0.006 and noncoronavirus disease 2019: adjusted relative risk, 1.19; 95% CI, 1.03-1.38; p = 0.017), shock, and fewer ventilator-free days. In coronavirus disease 2019 only, an increase in soluble CD14 subtype was associated with severe acute kidney injury (adjusted relative risk, 1.23; 95% CI, 1.05-1.44; p = 0.013). CONCLUSIONS: Higher plasma soluble CD14 subtype is associated with worse clinical outcomes in critically ill patients irrespective of coronavirus disease 2019 status though soluble CD14 subtype levels were lower in coronavirus disease 2019 patients than noncoronavirus disease 2019 patients. Soluble CD14 subtype levels may have prognostic utility in coronavirus disease 2019.
ABSTRACT
Rationale: No direct comparisons of clinical features, laboratory values, and outcomes between critically ill patients with coronavirus disease (COVID-19) and patients with influenza in the United States have been reported.Objectives: To evaluate the risk of mortality comparing critically ill patients with COVID-19 with patients with seasonal influenza.Methods: We retrospectively identified patients admitted to the intensive care units (ICUs) at two academic medical centers with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or influenza A or B infections between January 1, 2019, and April 15, 2020. The clinical data were obtained by medical record review. All patients except one had follow-up to hospital discharge or death. We used relative risk regression adjusting for age, sex, number of comorbidities, and maximum sequential organ failure scores on Day 1 in the ICU to determine the risk of hospital mortality and organ dysfunction in patients with COVID-19 compared with patients with influenza.Results: We identified 65 critically ill patients with COVID-19 and 74 patients with influenza. The mean (±standard deviation) age in each group was 60.4 ± 15.7 and 56.8 ± 17.6 years, respectively. Patients with COVID-19 were more likely to be male, have a higher body mass index, and have higher rates of chronic kidney disease and diabetes. Of the patients with COVID-19, 37% identified as Hispanic, whereas 10% of the patients with influenza identified as Hispanic. A similar proportion of patients had fevers (â¼40%) and lymphopenia (â¼80%) on hospital presentation. The rates of acute kidney injury and shock requiring vasopressors were similar between the groups. Although the need for invasive mechanical ventilation was also similar in both groups, patients with COVID-19 had slower improvements in oxygenation, longer durations of mechanical ventilation, and lower rates of extubation than patients with influenza. The hospital mortality was 40% in patients with COVID-19 and 19% in patients with influenza (adjusted relative risk, 2.13; 95% confidence interval, 1.24-3.63; P = 0.006).Conclusions: The need for invasive mechanical ventilation was common in patients in the ICU for COVID-19 and influenza. Compared with those with influenza, patients in the ICU with COVID-19 had worse respiratory outcomes, including longer duration of mechanical ventilation. In addition, patients with COVID-19 were at greater risk for in-hospital mortality, independent of age, sex, comorbidities, and ICU severity of illness.