Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
Add more filters

Publication year range
1.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37804830

ABSTRACT

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Subject(s)
Arginine , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Arginine/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Lipid Metabolism , Liver Neoplasms/metabolism
2.
Cell ; 172(1-2): 358-372.e23, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29307493

ABSTRACT

Metabolite-protein interactions control a variety of cellular processes, thereby playing a major role in maintaining cellular homeostasis. Metabolites comprise the largest fraction of molecules in cells, but our knowledge of the metabolite-protein interactome lags behind our understanding of protein-protein or protein-DNA interactomes. Here, we present a chemoproteomic workflow for the systematic identification of metabolite-protein interactions directly in their native environment. The approach identified a network of known and novel interactions and binding sites in Escherichia coli, and we demonstrated the functional relevance of a number of newly identified interactions. Our data enabled identification of new enzyme-substrate relationships and cases of metabolite-induced remodeling of protein complexes. Our metabolite-protein interactome consists of 1,678 interactions and 7,345 putative binding sites. Our data reveal functional and structural principles of chemical communication, shed light on the prevalence and mechanisms of enzyme promiscuity, and enable extraction of quantitative parameters of metabolite binding on a proteome-wide scale.


Subject(s)
Metabolome , Proteome/metabolism , Proteomics/methods , Signal Transduction , Software , Allosteric Regulation , Binding Sites , Escherichia coli , Metabolomics/methods , Protein Binding , Protein Interaction Maps , Proteome/chemistry , Saccharomyces cerevisiae , Sequence Analysis, Protein/methods
3.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36917985

ABSTRACT

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Subject(s)
Endoplasmic Reticulum Stress , Intestinal Mucosa , Th17 Cells , Endoplasmic Reticulum Stress/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Th17 Cells/cytology , Th17 Cells/metabolism , Cell Differentiation , Humans , Animals , Mice , Mice, Transgenic , Anti-Bacterial Agents/pharmacology
4.
Immunity ; 49(3): 545-559.e5, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30193848

ABSTRACT

Although the mammalian microbiota is well contained within the intestine, it profoundly shapes development and metabolism of almost every host organ. We questioned the range and depth of microbial metabolite penetration into the host, and how this is modulated by intestinal immunity. Chemically identical microbial and host metabolites were distinguished by stable isotope tracing from 13C-labeled live non-replicating Escherichia coli, differentiating 12C host isotopes with high-resolution mass spectrometry. Hundreds of endogenous microbial compounds penetrated 23 host tissues and fluids after intestinal exposure: subsequent 12C host metabolome signatures included lipidemia, reduced glycolysis, and inflammation. Penetrant bacterial metabolites from the small intestine were rapidly cleared into the urine, whereas induced antibodies curtailed microbial metabolite exposure by accelerating intestinal bacterial transit into the colon where metabolite transport mechanisms are limiting. Pervasive penetration of microbial molecules can cause extensive host tissue responses: these are limited by immune and non-immune intestinal mucosal adaptations to the microbiota.


Subject(s)
Antibodies/metabolism , Gastrointestinal Microbiome/physiology , Glycolysis/immunology , Hyperlipidemias/immunology , Inflammation/immunology , Mammals/immunology , Animals , Antibodies/immunology , Carbon Radioisotopes/analysis , Host-Pathogen Interactions , Immunity , Immunoglobulin Heavy Chains/genetics , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Mol Cell ; 74(6): 1239-1249.e4, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31023582

ABSTRACT

The stringent response alarmones pppGpp and ppGpp are essential for rapid adaption of bacterial physiology to changes in the environment. In Escherichia coli, the nucleosidase PpnN (YgdH) regulates purine homeostasis by cleaving nucleoside monophosphates and specifically binds (p)ppGpp. Here, we show that (p)ppGpp stimulates the catalytic activity of PpnN both in vitro and in vivo causing accumulation of several types of nucleobases during stress. The structure of PpnN reveals a tetramer with allosteric (p)ppGpp binding sites located between subunits. pppGpp binding triggers a large conformational change that shifts the two terminal domains to expose the active site, providing a structural rationale for the stimulatory effect. We find that PpnN increases fitness and adjusts cellular tolerance to antibiotics and propose a model in which nucleotide levels can rapidly be adjusted during stress by simultaneous inhibition of biosynthesis and stimulation of degradation, thus achieving a balanced physiological response to constantly changing environments.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Guanosine Pentaphosphate/chemistry , Guanosine Tetraphosphate/chemistry , N-Glycosyl Hydrolases/chemistry , Allosteric Regulation , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Guanosine Pentaphosphate/metabolism , Guanosine Tetraphosphate/metabolism , Kinetics , Models, Molecular , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Sequence Alignment , Sequence Homology, Amino Acid , Stress, Physiological , Substrate Specificity
6.
Nature ; 584(7821): 470-474, 2020 08.
Article in English | MEDLINE | ID: mdl-32669712

ABSTRACT

The rate of cell growth is crucial for bacterial fitness and drives the allocation of bacterial resources, affecting, for example, the expression levels of proteins dedicated to metabolism and biosynthesis1,2. It is unclear, however, what ultimately determines growth rates in different environmental conditions. Moreover, increasing evidence suggests that other objectives are also important3-7, such as the rate of physiological adaptation to changing environments8,9. A common challenge for cells is that these objectives cannot be independently optimized, and maximizing one often reduces another. Many such trade-offs have indeed been hypothesized on the basis of qualitative correlative studies8-11. Here we report a trade-off between steady-state growth rate and physiological adaptability in Escherichia coli, observed when a growing culture is abruptly shifted from a preferred carbon source such as glucose to fermentation products such as acetate. These metabolic transitions, common for enteric bacteria, are often accompanied by multi-hour lags before growth resumes. Metabolomic analysis reveals that long lags result from the depletion of key metabolites that follows the sudden reversal in the central carbon flux owing to the imposed nutrient shifts. A model of sequential flux limitation not only explains the observed trade-off between growth and adaptability, but also allows quantitative predictions regarding the universal occurrence of such tradeoffs, based on the opposing enzyme requirements of glycolysis versus gluconeogenesis. We validate these predictions experimentally for many different nutrient shifts in E. coli, as well as for other respiro-fermentative microorganisms, including Bacillus subtilis and Saccharomyces cerevisiae.


Subject(s)
Adaptation, Physiological , Environment , Escherichia coli/growth & development , Escherichia coli/metabolism , Acetates/metabolism , Bacillus subtilis/cytology , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Cell Division , Escherichia coli/enzymology , Escherichia coli/genetics , Fermentation , Gluconeogenesis , Glucose/metabolism , Glycolysis , Metabolomics , Models, Biological , Mutation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
7.
Nucleic Acids Res ; 51(6): 2974-2992, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36919610

ABSTRACT

Genome-scale engineering enables rational removal of dispensable genes in chassis genomes. Deviating from this approach, we applied greedy accumulation of deletions of large dispensable regions in the Bacillus subtilis genome, yielding a library of 298 strains with genomes reduced up to 1.48 Mb in size. High-throughput physiological phenotyping of these strains confirmed that genome reduction is associated with substantial loss of cell fitness and accumulation of synthetic-sick interactions. Transcriptome analysis indicated that <15% of the genes conserved in our genome-reduced strains exhibited a twofold or higher differential expression and revealed a thiol-oxidative stress response. Most transcriptional changes can be explained by loss of known functions and by aberrant transcription at deletion boundaries. Genome-reduced strains exhibited striking new phenotypes relative to wild type, including a very high resistance (increased >300-fold) to the DNA-damaging agent mitomycin C and a very low spontaneous mutagenesis (reduced 100-fold). Adaptive laboratory evolution failed to restore cell fitness, except when coupled with a synthetic increase of the mutation rate, confirming low evolvability. Although mechanisms underlying this emergent phenotype are not understood, we propose that low evolvability can be leveraged in an engineering strategy coupling reductive cycles with evolutive cycles under induced mutagenesis.


Subject(s)
Bacillus subtilis , Genome, Bacterial , Genome, Bacterial/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Phenotype , Mutagenesis , Mutation Rate
8.
Proc Natl Acad Sci U S A ; 119(30): e2117748119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35862452

ABSTRACT

In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.


Subject(s)
Bacteria , Bacteriophages , Microbiota , Seawater , Aquatic Organisms , Bacteria/classification , Chitin/metabolism , Seawater/microbiology , Seawater/virology
9.
Nat Methods ; 18(7): 747-756, 2021 07.
Article in English | MEDLINE | ID: mdl-34239102

ABSTRACT

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Subject(s)
Mass Spectrometry/methods , Metabolomics/methods , Animals , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Humans , Mass Spectrometry/standards , Metabolomics/standards , Random Allocation , Specimen Handling , Workflow
10.
J Chem Inf Model ; 64(1): 150-163, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38117131

ABSTRACT

This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.


Subject(s)
Adenosine Triphosphate , Adenylate Kinase , Adenylate Kinase/chemistry , Ligands , Apoenzymes/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Protein Conformation
11.
Mol Syst Biol ; 18(2): e10767, 2022 02.
Article in English | MEDLINE | ID: mdl-35194925

ABSTRACT

Chemical probes are important tools for understanding biological systems. However, because of the huge combinatorial space of targets and potential compounds, traditional chemical screens cannot be applied systematically to find probes for all possible druggable targets. Here, we demonstrate a novel concept for overcoming this challenge by leveraging high-throughput metabolomics and overexpression to predict drug-target interactions. The metabolome profiles of yeast treated with 1,280 compounds from a chemical library were collected and compared with those of inducible yeast membrane protein overexpression strains. By matching metabolome profiles, we predicted which small molecules targeted which signaling systems and recovered known interactions. Drug-target predictions were generated across the 86 genes studied, including for difficult to study membrane proteins. A subset of those predictions were tested and validated, including the novel targeting of GPR1 signaling by ibuprofen. These results demonstrate the feasibility of predicting drug-target relationships for eukaryotic proteins using high-throughput metabolomics.


Subject(s)
Metabolomics , Saccharomyces cerevisiae , Metabolome , Metabolomics/methods , Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Small Molecule Libraries/metabolism
12.
Mol Syst Biol ; 18(1): e10704, 2022 01.
Article in English | MEDLINE | ID: mdl-34994048

ABSTRACT

Central carbon metabolism is highly conserved across microbial species, but can catalyze very different pathways depending on the organism and their ecological niche. Here, we study the dynamic reorganization of central metabolism after switches between the two major opposing pathway configurations of central carbon metabolism, glycolysis, and gluconeogenesis in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida. We combined growth dynamics and dynamic changes in intracellular metabolite levels with a coarse-grained model that integrates fluxes, regulation, protein synthesis, and growth and uncovered fundamental limitations of the regulatory network: After nutrient shifts, metabolite concentrations collapse to their equilibrium, rendering the cell unable to sense which direction the flux is supposed to flow through the metabolic network. The cell can partially alleviate this by picking a preferred direction of regulation at the expense of increasing lag times in the opposite direction. Moreover, decreasing both lag times simultaneously comes at the cost of reduced growth rate or higher futile cycling between metabolic enzymes. These three trade-offs can explain why microorganisms specialize for either glycolytic or gluconeogenic substrates and can help elucidate the complex growth patterns exhibited by different microbial species.


Subject(s)
Gluconeogenesis , Pseudomonas putida , Carbon , Glucose , Glycolysis , Pseudomonas putida/genetics
13.
Proc Natl Acad Sci U S A ; 117(22): 12239-12248, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32430326

ABSTRACT

The ability to tolerate and thrive in diverse environments is paramount to all living organisms, and many organisms spend a large part of their lifetime in starvation. Upon acute glucose starvation, yeast cells undergo drastic physiological and metabolic changes and reestablish a constant-although lower-level of energy production within minutes. The molecules that are rapidly metabolized to fuel energy production under these conditions are unknown. Here, we combine metabolomics and genetics to characterize the cells' response to acute glucose depletion and identify pathways that ensure survival during starvation. We show that the ability to respire is essential for maintaining the energy status and to ensure viability during starvation. Measuring the cells' immediate metabolic response, we find that central metabolites drastically deplete and that the intracellular AMP-to-ATP ratio strongly increases within 20 to 30 s. Furthermore, we detect changes in both amino acid and lipid metabolite levels. Consistent with this, both bulk autophagy, a process that frees amino acids, and lipid degradation via ß-oxidation contribute in parallel to energy maintenance upon acute starvation. In addition, both these pathways ensure long-term survival during starvation. Thus, our results identify bulk autophagy and ß-oxidation as important energy providers during acute glucose starvation.


Subject(s)
Amino Acids/metabolism , Autophagy , Energy Metabolism , Glucose/deficiency , Lipid Metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Adenosine Triphosphate/metabolism , Gene Expression Regulation, Fungal , Metabolomics , Oxidation-Reduction , Saccharomyces cerevisiae/metabolism , Starvation
14.
Proc Natl Acad Sci U S A ; 117(15): 8494-8502, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32229570

ABSTRACT

Human tuberculosis is caused by members of the Mycobacterium tuberculosis complex (MTBC) that vary in virulence and transmissibility. While genome-wide association studies have uncovered several mutations conferring drug resistance, much less is known about the factors underlying other bacterial phenotypes. Variation in the outcome of tuberculosis infection and diseases has been attributed primarily to patient and environmental factors, but recent evidence indicates an additional role for the genetic diversity among MTBC clinical strains. Here, we used metabolomics to unravel the effect of genetic variation on the strain-specific metabolic adaptive capacity and vulnerability. To define the functionality of single-nucleotide polymorphisms (SNPs) systematically, we developed a constraint-based approach that integrates metabolomic and genomic data. Our model-based predictions correctly classify SNP effects in pyruvate kinase and suggest a genetic basis for strain-specific inherent baseline susceptibility to the antibiotic para-aminosalicylic acid. Our method is broadly applicable across microbial life, opening possibilities for the development of more selective treatment strategies.


Subject(s)
Antitubercular Agents/pharmacology , Genomics/methods , Host-Pathogen Interactions , Metabolome , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Tuberculosis/genetics , Aminosalicylic Acid/pharmacology , Genome, Bacterial , Genome-Wide Association Study , Humans , Models, Molecular , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Phenotype , Phylogeny , Pyruvate Kinase/metabolism , Tuberculosis/drug therapy , Tuberculosis/microbiology , Virulence
15.
Mol Syst Biol ; 17(4): e10064, 2021 04.
Article in English | MEDLINE | ID: mdl-33852189

ABSTRACT

Microorganisms adjust metabolic activity to cope with diverse environments. While many studies have provided insights into how individual pathways are regulated, the mechanisms that give rise to coordinated metabolic responses are poorly understood. Here, we identify the regulatory mechanisms that coordinate catabolism and anabolism in Escherichia coli. Integrating protein, metabolite, and flux changes in genetically implemented catabolic or anabolic limitations, we show that combined global and local mechanisms coordinate the response to metabolic limitations. To allocate proteomic resources between catabolism and anabolism, E. coli uses a simple global gene regulatory program. Surprisingly, this program is largely implemented by a single transcription factor, Crp, which directly activates the expression of catabolic enzymes and indirectly reduces the expression of anabolic enzymes by passively sequestering cellular resources needed for their synthesis. However, metabolic fluxes are not controlled by this regulatory program alone; instead, fluxes are adjusted mostly through passive changes in the local metabolite concentrations. These mechanisms constitute a simple but effective global regulatory program that coarsely partitions resources between different parts of metabolism while ensuring robust coordination of individual metabolic reactions.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways , Escherichia coli Proteins/metabolism , Metabolic Flux Analysis , Metabolic Networks and Pathways/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription, Genetic
16.
Am J Nephrol ; 53(2-3): 215-225, 2022.
Article in English | MEDLINE | ID: mdl-35196658

ABSTRACT

INTRODUCTION: Metabolomics could offer novel prognostic biomarkers and elucidate mechanisms of diabetic kidney disease (DKD) progression. Via metabolomic analysis of urine samples from 995 CRIC participants with diabetes and state-of-the-art statistical modeling, we aimed to identify metabolites prognostic to DKD progression. METHODS: Urine samples (N = 995) were assayed for relative metabolite abundance by untargeted flow-injection mass spectrometry, and stringent statistical criteria were used to eliminate noisy compounds, resulting in 698 annotated metabolite ions. Utilizing the 698 metabolites' ion abundance along with clinical data (demographics, blood pressure, HbA1c, eGFR, and albuminuria), we developed univariate and multivariate models for the eGFR slope using penalized (lasso) and random forest models. Final models were tested on time-to-ESKD (end-stage kidney disease) via cross-validated C-statistics. We also conducted pathway enrichment analysis and a targeted analysis of a subset of metabolites. RESULTS: Six eGFR slope models selected 9-30 variables. In the adjusted ESKD model with highest C-statistic, valine (or betaine) and 3-(4-methyl-3-pentenyl)thiophene were associated (p < 0.05) with 44% and 65% higher hazard of ESKD per doubling of metabolite abundance, respectively. Also, 13 (of 15) prognostic amino acids, including valine and betaine, were confirmed in the targeted analysis. Enrichment analysis revealed pathways implicated in kidney and cardiometabolic disease. CONCLUSIONS: Using the diverse CRIC sample, a high-throughput untargeted assay, followed by targeted analysis, and rigorous statistical analysis to reduce false discovery, we identified several novel metabolites implicated in DKD progression. If replicated in independent cohorts, our findings could inform risk stratification and treatment strategies for patients with DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Albuminuria , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Disease Progression , Humans , Metabolomics/methods , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism
17.
Proc Natl Acad Sci U S A ; 116(48): 24164-24173, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31712440

ABSTRACT

PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5'-phosphate (PLP) in Escherichia coli Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity, suggesting that PLP is being produced by some alternative pathway. Continued evolution of parallel lineages for 110 to 150 generations produced several strains that grow robustly in glucose. We identified a 4-step bypass pathway patched together from promiscuous enzymes that restores PLP synthesis in strain JK1. None of the mutations in JK1 occurs in a gene encoding an enzyme in the new pathway. Two mutations indirectly enhance the ability of SerA (3-phosphoglycerate dehydrogenase) to perform a new function in the bypass pathway. Another disrupts a gene encoding a PLP phosphatase, thus preserving PLP levels. These results demonstrate that a functional pathway can be patched together from promiscuous enzymes in the proteome, even without mutations in the genes encoding those enzymes.


Subject(s)
Carbohydrate Dehydrogenases/genetics , Escherichia coli Proteins/genetics , Escherichia coli/growth & development , Escherichia coli/genetics , Genome, Bacterial , Pyridoxal Phosphate/biosynthesis , Carbohydrate Dehydrogenases/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Directed Molecular Evolution/methods , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Genes, Essential , Glucose/metabolism , Metabolic Networks and Pathways/genetics , Microorganisms, Genetically-Modified , Mutation , Pyridoxal Phosphate/genetics
18.
Biochemistry ; 60(28): 2246-2258, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34250801

ABSTRACT

Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.


Subject(s)
Adenylate Kinase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/chemistry , Molecular Dynamics Simulation , Protein Conformation
19.
Anal Chem ; 93(19): 7164-7171, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33944555

ABSTRACT

Identifying and quantifying metabolites secreted by microbial isolates can aid in understanding the physiological traits of diverse species and their interaction with the environment. Mass spectrometry-based metabolomics has potential to provide a holistic view of the exometabolism of marine isolates, but the high salt content of such samples interferes with chromatography and ionization during the measurement of polar exometabolites. The most common desalting methods are faced with major limitations, including limited separation of small polar metabolites from salts, the use of organic solvents that cannot accommodate large salt quantities, and sample throughput. Here, we utilize a cyano stationary phase to develop a high-throughput, isocratic liquid chromatography-mass spectrometry (LC-MS) desalting method that mitigates these shortcomings. We demonstrate that counterions present in a common marine growth medium experience distinct elution times, which prevents their coelution with 73 physiologically relevant polar metabolites, effectively minimizing the effects of salt content on ion suppression. We determined optimal salt concentrations for quadrupole time-of-flight (QTOF) MS measurements and limits of quantification in the low micromolar range in the salty matrix. The efficacy of this method was demonstrated through the measurement of exometabolites secreted by three marine bacterial isolates originating from a carrageenan degrading microbial community. This method provides a simple, versatile desalting method for measuring exometabolites of environmental isolates and other biological matrices.


Subject(s)
Metabolomics , Chromatography, Liquid , Mass Spectrometry , Solvents
20.
Mol Syst Biol ; 16(9): e9965, 2020 09.
Article in English | MEDLINE | ID: mdl-32965749

ABSTRACT

This piece discusses how the different observations of two independent studies (Kotte et al, 2014; Basan et al, 2020), regarding population-level heterogeneity and lag times during diauxic shift, can be largely explained by different experimental protocols.


Subject(s)
Bacteria , Carbon , Adaptation, Physiological , Bacteria/genetics , Escherichia coli
SELECTION OF CITATIONS
SEARCH DETAIL