Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
Add more filters

Publication year range
1.
J Dairy Sci ; 107(3): 1751-1765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37806621

ABSTRACT

In a previously established animal model, 38 multiparous Holstein cows were assigned to 2 groups fed different diets to achieve either a normal (NBCS) or high (HBCS) body condition score (BCS) and backfat thickness (BFT) until dry-off at -49 d before calving (NBCS: BCS <3.5 [3.02 ± 0.24) and BFT <1.2 cm [0.92 ± 0.21]; HBCS: BCS >3.75 [3.82 ± 0.33] and BFT >1.4 cm [2.36 ± 0.35], mean ± SD). The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg; mean ± SD). The cows were then fed the same diet during the dry period and subsequent lactation, maintaining the differences in BFT and BCS throughout the study. Using the serum metabolomics data, we created a classification model that identified different metabotypes. Machine learning classifiers revealed a distinct cluster labeled HBCS-PN (HBCS predicted normal BCS) among over-conditioned cows. These cows showed higher feed intake and better energy balance than the HBCS-PH (high BCS predicted high BCS) group, while milk yield was similar. The aim of this study was to investigate the changes in the hepatic transcriptome of cows differing in serum-metabotype postpartum. We performed hepatic transcriptome analysis in cows from 3 metabolic clusters: HBCS-PH (n = 8), HBCS-PN (n = 6), and normal BCS predicted normal BCS (NBCS-PN, n = 8) on d 21 (±2) postpartum. Liver tissue from cows expressed a total of 13,118 genes aligned with the bovine genome. A total of 48 differentially expressed genes (DEG; false discovery rate ≤0.1 and fold-change >1.5) were found between NBCS-PN and HBCS-PH cows, whereas 24 DEG (14 downregulated and 10 upregulated) were found between HBCS-PN and HBCS-PH cows. The downregulated DEG (n = 31) in NBCS-PN cows compared with HBCS-PH cows are involved in biosynthetic processes such as lipid, lipoprotein, and cholesterol synthesis (e.g., APOA1, MKX, RPL3L, CANT1, CHPF, FUT1, ZNF696), cell organization, biogenesis, and localization (e.g., SLC12A8, APOA1, BRME1, RPL3L, STAG3, FBXW5, TMEM120A, SLC16A5, FGF21), catabolic processes (e.g., BREH1, MIOX, APOBEC2, FBXW5, NUDT16), and response to external stimuli (e.g., APOA1, FGF21, TMEM120A, FNDC4), whereas upregulated DEG (n = 17) are related to signal transduction and cell motility (e.g., RASSF2, ASPN, SGK1, KIF7, ZEB2, MAOA, ACKR4, TCAF1), suggesting altered metabolic adaptations during lactation. Our results showed 24 DEG between HBCS-PN and HBCS-PH in the liver. The expression of SLC12A8, SLC16A5, FBXW5, OSGIN1, LAMA3, KDELR3, OR4X17, and INHBE, which are responsible for regulating cellular processes was downregulated in HBCS-PN cows compared with HBCS-PH cows. In particular, the downregulation of SLC12A8 and SLC16A5 expression in HBCS-PN cows indicates lower metabolic load and reduced need for NAD+ biosynthesis to support mitochondrial respiratory processes. The upregulation of MAOA, ACKR4, KIF27, SFRP1, and CAV2 in the liver of HBCS-PN cows may indicate adaptive mechanisms to maintain normal liver function in response to increased metabolic demands from over-conditioning. These molecular differences underscore the existence of distinct metabolic types in cows and provide evidence for the role of the liver in shaping different metabolic patterns.


Subject(s)
Postpartum Period , Transcriptome , Female , Cattle , Animals , Postpartum Period/metabolism , Lactation/physiology , Milk/chemistry , Liver/metabolism
2.
J Dairy Sci ; 107(1): 641-654, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709023

ABSTRACT

Incomplete milking (IM) is one way of mitigating the negative energy balance (NEB) that is characteristic for early lactation and may increase the risk for disease. Our objectives were to test the effects of IM in early lactation on energy balance (EB), metabolic status, udder health, and subsequent performance. To facilitate the practical application, an automated system was used to remove the milking clusters once a predefined amount of milk is withdrawn. Forty-six Holstein cows were equally allocated to either the treatment (TRT, starting on 8 d in milk) or the control group (CON; conventional cluster removal at milk flow rate <0.3 kg/min). Milk removal in the TRT group was limited to the individual cow's milk yield 1 d before IM started and held constant for 14 d. Thereafter, all cows were conventionally milked and records related to EB, performance, and udder health were continued up to 15 wk of lactation. During the 14 d of IM, on average 11.1% less milk was obtained from the TRT cows than from the CON cows. Thereafter, milk yield increased in the TRT group, eliminating the group difference throughout the remaining observation period until wk 15 of lactation. The TRT cows tended to have less dry matter intake and also water intake than the CON cows. The extent of the NEB and the circulating concentrations of fatty acids, ß-hydroxybutyrate, insulin-like growth factor-1, and leptin mostly did not differ between the groups. The IM did not affect body condition. Udder health was maintained over the entire observation period in all cows. Our results demonstrate the applicability of the automated cluster removal for limiting milk withdrawal to a defined amount in early lactation. However, it remains to be determined whether the absent effect on energy metabolism was due to the relatively stable energy status of the cows or to the relatively mild IM setting used herein.


Subject(s)
Lactation , Mammary Glands, Animal , Female , Cattle , Animals , Mammary Glands, Animal/metabolism , Milk/metabolism , Fatty Acids/metabolism , Energy Metabolism , Dairying/methods
3.
J Dairy Sci ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389301

ABSTRACT

This study investigated the long-term effects of feeding 5-d transition milk (TRANS) compared with milk replacer (MR) on parameters, including intake, growth, feeding behavior and oxidative stress. Fifty Holstein calves (30 females and 20 males) were fed either 12 L/day TRANS or MR for the first 5 d after an initial colostrum feeding of 3.5 L. Thereafter, all calves were fed with 12 L of MR/d (140 g/L) and were gradually weaned starting in wk 8 until wk 14. Throughout the 14 wk the calves had unrestricted access to concentrate (up to 9.8 kg/calf/day), hay, and water. After weaning all heifers were fed a total mixed ration for young cows. Oxidative status was assessed in blood samples from birth to first insemination. Parameters assessed included the ferric reducing ability of plasma (FRAP) for antioxidant capacity and the concentration of reactive oxygen metabolites by the dROM (detection of reactive oxygen metabolites) assay. In addition, the activity of glutathione peroxidase (GSH-Px), oxidative damage in the form of lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and as advanced oxidation protein products (AOPP) were measured. An oxidative stress index (OSi) was calculated: dROM/FRAP x 100. Total protein (TP) concentration was also quantified via the Bradford assay. The only significant difference in feeding behavior between the 2 treatment groups was a higher concentrate intake by the TRANS calves during the weaning phase. Body weight and ADG did not differ significantly between the TRANS and MR groups. TRANS calves showed a trend for fewer cases of health disorders. Markers of oxidative status, including TBARS, AOPP, GSHPx, FRAP and ROM, showed no treatment effects but varied significantly over time. Of note, the oxidative stress index as ratio between pro- and antioxidants in both groups peaked during weaning and then returned to baseline, suggesting an effective response to this transition phase Overall, the results indicate that feeding TRANS during the first 5 d of life had no long-term effect on the parameters studied as compared with MR feeding under the present rearing conditions. These results provide insight into the changes of oxidative status with age and confirm that the relatively high milk feeding level, slow and late weaning enables calves to adapt well to solely solid feed.

4.
J Dairy Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004138

ABSTRACT

Vegetable fat blends are commonly used as fat sources in milk replacers (MR) for calves, but their composition differs considerably from that of bovine milk fat. The aim of this study was to investigate the serum lipid profile of pre-weaned calves fed twice-daily MR containing 30% fat (% DM). Upon arrival, 30 male Holstein-Friesian calves (BW = 45.6 ± 4.0 kg, age = 2.29 ± 0.8 d) were randomly assigned to 2 experimental diets (n = 15 per treatment): one MR was derived from either vegetable fats (VG; 80% rapeseed and 20% coconut fats) or animal fats (AN; 65% Packer's lard and 35% dairy cream). The 2 MR formulas contained 30% fat, 24% CP, and 36% lactose. Calves were housed indoors in individual pens with ad libitum access to chopped straw and water. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 13.5% solids. An untargeted liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) method was employed to analyze the lipid profiles in the serum of calves sampled from the jugular vein at 35 d of age. In total, 594 lipids were characterized, comprising 25 different lipid classes. Principal component analysis (PCA) showed significant separation between VG and AN, indicating different lipid profiles in the serum. An orthogonal partial least squares discriminant analysis (OPLS-DA) classification model was used to further validate the distinction between the 2 treatment groups. The model exhibited a robust class separation and high predictive accuracy. Using a Volcano plot (fold change threshold ≥1.5 and false discovery rate ≤0.05), it was observed that calves fed AN had higher levels of 39 lipid species in serum than calves fed VG, whereas 171 lipid species were lower in the AN group. Lipid classes, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), triglycerides (TG), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE), were different. In particular, PC and PE were observed at lower levels in calves fed AN, possibly indicating shifts in cell membrane characteristics, intracellular signaling, and liver functions. In addition, a decrease in certain triglyceride (TG) species was observed in calves fed AN, including a decrease in TG species such as TG 36:0 and TG 38:0, possibly related to variations in the content of certain fatty acids (FA) within the AN MR, such as C10:0, C12:0, C14:0, and C18:0 compared with the VG MR. Calves fed AN had lower levels of LPC and LPE, and lyso-phosphatidylinositol (LPI), SM, and phosphatidylinositol (PI) species than calves fed VG, suggesting shifts in lipoprotein and lipid metabolic pathways. In conclusion, these results deepen the understanding of how lipid sources in MR can modulate the serum lipidome profiles of dairy calves.

5.
J Dairy Sci ; 107(2): 1263-1285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37777004

ABSTRACT

The objective of this study was to characterize changes in the serum metabolome and various indicators of oxidative balance in dairy cows starting 2 wk before dry-off and continuing until wk 16 of lactation. Twelve Holstein dairy cows (body weight 745 ± 71 kg, body condition score 3.43 ± 0.66; mean ± SD) were housed in a tiestall barn from 10 wk before to 16 wk after parturition. Cows were dried off 6 wk before the expected calving date (mean dry period length = 42 d). From 8 wk before calving to 16 wk after calving, blood samples were taken weekly to study redox metabolism by determining antioxidant capacity, measured as the ferric-reducing ability of plasma, reactive oxidative metabolites, oxidative stress index, oxidative damage of lipids, measured as thiobarbituric acid reactive substances, and glutathione peroxidase activity. According to these results, dairy cows had the lowest serum antioxidant capacity and greater levels of oxidative stress during the dry-off period and the early postpartum period. For metabolomics, a subset of serum samples including wk -7 (before dry-off), -5 (after dry-off), -1, 1, 5, 10, and 15 relative to calving were used. A targeted metabolomics approach was performed using liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 240 metabolites in serum were used in the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a remarkable shift in metabolic phenotype between the dry period and late and early lactation. Changes in many non-lipid metabolites associated with one-carbon metabolism, the tricarboxylic acid cycle, the urea cycle, and AA catabolism were observed in the study, with changes in AA serum concentrations likely related to factors such as energy and nitrogen balance, digestive efficiency, and changing diets. The study confirmed an extensive remodeling of the serum lipidome in peripartum dairy cows, highlighting the importance of changes in acylcarnitine (acylCN), phosphatidylcholines (PC), and triacylglycerols (TG), as they play a crucial role in lipid metabolism. Results showed that short-chain acylCN increased after dry-off and decreased thereafter, whereas lipid-derived acylCN increased around parturition, suggesting that more fatty acids could enter mitochondria. Phospholipids and sphingolipids in serum showed changes during lactation. In particular, concentrations of sphingomyelins, PC, and lysoPC decreased around calving but increased in mid- and late lactation. In contrast, concentrations of TG remained consistently low after parturition. The serum concentrations of bile acids fluctuated during the dry period and lactation, with glycocholic acid, cholic acid, glycodeoxycholic acid, and taurocholic acid showing the greatest concentrations. These changes are likely due to the interplay of diet, liver function, and the ability of the gut microbiota to convert primary to secondary bile acids. Overall, these descriptive results may aid in hypothesis generation and in the design and interpretation of future metabolite-based studies in dairy cows. Furthermore, they contribute to our understanding of the physiological ranges in serum metabolites relative to the lactation cycle of the dairy cow.


Subject(s)
Antioxidants , Milk , Female , Cattle , Animals , Milk/chemistry , Antioxidants/metabolism , Serum , Lactation/physiology , Postpartum Period/metabolism , Diet/veterinary , Metabolome , Energy Metabolism , Bile Acids and Salts
6.
J Dairy Sci ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343201

ABSTRACT

Skeletal muscle is vital in maintaining metabolic homeostasis and adapting to the physiological needs of pregnancy and lactation. Despite advancements in understanding metabolic changes in dairy cows around calving and early lactation, there are still gaps in our knowledge, especially concerning muscle metabolism and the changes associated with drying off. This study aimed to characterize the skeletal muscle metabolome in the context of the dietary and metabolic changes occurring during the transition from the cessation of lactation to the resumption of lactation in dairy cows. Twelve Holstein dairy cows housed in tie stalls were dried off 6 weeks (wk) before the expected calving date. Cows were individually fed ad libitum total mixed rations composed of grass silage, corn silage, and concentrate during lactation and of corn silage, barley straw, and concentrate during the dry period. The metabolome was characterized in skeletal muscle samples (M. longissimus dorsi) collected on wk -7 (9 d before dry-off), -5 (6 d after dry-off), and wk -1, and 1 relative to calving. The targeted metabolomics approach was conducted using the MxP Quant 500 kit (Biocrates Life Sciences AG) with liquid chromatography, flow injection, and electrospray ionization triple quadrupole mass spectrometry. Statistical analysis on the muscle metabolite data was performed using MetaboAnalyst 5.0, which allowed us to conduct various multivariate analyses such as principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), informative heat map generation, and hierarchical clustering. The statistical analysis revealed a clear separation between pregnancy (wk -7, -5, and -1) and post-calving (wk 1). Starting 5 wk before calving and continuing through the first wk thereafter, the concentration of 3-methylhistidine (3-MH) in the muscle increased. This coincided with an increase in the concentrations of 11 AA (Phe, His, Tyr, Trp, Arg, Asn, Leu, Ile, Gly, Ser, and Thr) in the first wk after calving, whereas Gln decreased. l-arginine pathway metabolites (homoarginine, ornithine, citrulline, and asymmetric dimethylarginine), betaine, and sarcosine followed a similar pattern, increasing from wk -7 to -5, but decreasing from wk -1 to 1. The transition from pregnancy to lactation was associated with an increase in concentrations of the long-chain acylcarnitine species C16, C16:1, C18, and C18:1 in the muscle, whereas the concentrations of phosphatidylcholine and sphingomyelin in the muscle remained stable. The significant changes observed in the metabolome mainly concerned the AA and AA-related metabolites, indicating muscle protein breakdown in the first wk after calving. The metabolites produced by the L-Arg pathway might contribute to regulating skeletal muscle mass and function in periparturient dairy cows. The elevated concentrations of long-chain acylcarnitine species in the muscle in the first wk after calving suggest incomplete fatty acid oxidation, likely due to insufficient metabolic adaptation in response to the fatty acid load around the time of calving.

7.
J Dairy Sci ; 107(1): 184-201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641288

ABSTRACT

Significant differences exist in the composition of current milk replacers (MR) and bovine whole milk. This study investigated how the macronutrient profile of 3 different MR formulations containing varying amounts of fat, lactose, and protein, and a whole milk powder (WP), affect postprandial metabolism and gut permeability in male Holstein calves. Sixty-four calves (45.4 ± 4.19 kg [mean ± SD] and 1.8 ± 0.62 d of age) were blocked in order of arrival to the facility and within each block, calves were randomly assigned to 1 of 4 treatments. Treatments included a high-fat MR (HF: 25.0% dry matter [DM] fat, 22.5% protein, 38.6% lactose; n = 14), a high-lactose MR (HL: 44.6% lactose, 22.5% protein, 18.0% fat; n = 17), a high-protein MR (HP: 26.0% protein, 18.0% fat, 41.5% lactose; n = 17), and WP (26.0% fat, 24.5% protein, 38.0% lactose; n = 16). Calves were fed 3.0 L (135 g/L) 3 times daily at 0600, 1200, and 1800 h with a teat bucket. Milk intake was recorded daily for the first 28 d after arrival, and blood sampling and body weight measurements were performed at arrival and on d 7, 14, 21, and 27. Gut permeability was estimated from fractional urinary excretion of indigestible markers (Cr-EDTA, lactulose, and d-mannitol) administered as a single dose on d 21 instead of the morning milk meal. Digestibility was determined simultaneously from a total collection of feces over 24 h. Postprandial dynamics were measured on d 28 by sequential blood sampling over 7.5 h. Dry matter intake of MR over 28 d was slightly greater in calves fed HL and HP than in WP. Recovery of Cr-EDTA and d-mannitol over a 24-h urine collection was greater in calves fed WP and HP than HL calves. Apparent total-tract digestibility of crude ash, protein, and fat did not differ among treatments; however, DM digestibility was lower in calves fed WP than in other treatment groups. In addition, abomasal emptying, as indicated by the area under the curve (AUC) for acetaminophen, was slower in calves fed WP than in calves fed HF and HL. The AUC for postprandial plasma glucose was lower in calves fed HL than WP and HF and lower in calves fed HP than WP. The AUC for postprandial serum insulin was greater in calves fed HP than WP and HF, whereas calves fed HL did not differ from the other treatments. Postprandial triglycerides were greater in calves fed WP, and postprandial adiponectin was higher in calves fed HL than other treatments. The high content of lactose and protein in MR had a major effect on postprandial metabolism. This raises the possibility of optimizing MR formulations to maintain metabolic homeostasis and influence development.


Subject(s)
Milk Substitutes , Milk , Animals , Cattle , Male , Milk/metabolism , Powders , Diet/veterinary , Lactose/metabolism , Edetic Acid , Nutrients , Permeability , Animal Feed/analysis , Mannitol , Body Weight , Weaning
8.
J Dairy Sci ; 107(5): 2818-2831, 2024 May.
Article in English | MEDLINE | ID: mdl-37923211

ABSTRACT

Milk replacers (MR) for calves contain alternative fat sources as substitute for milk fat. This substitution leads to differences in fat properties, such as the fatty acid profile and the triglyceride structure. This study evaluated how fat composition in MR affects gastrointestinal health, blood redox parameters, and postprandial metabolism in calves fed twice daily. Forty-five individually housed male Holstein-Friesian calves (2.3 ± 0.85 d of age) were assigned to 1 of 15 blocks based on the age and the day of arrival. Within each block, calves were randomly assigned to 1 of 3 experimental diets and received their respective diet from arrival until 35 d after arrival. The 3 experimental diets (n = 15 per treatment group) consisted of an MR with a blend of vegetable fats containing rapeseed and coconut (VG), an MR with only animal fats from lard and dairy cream (AN), and an MR containing a mixture of animal and vegetable fats including lard and coconut (MX). The fatty acid profile of each MR was formulated to resemble that of bovine milk fat while using only 2 fat sources. All MR were isoenergetic, with 30% fat (% DM), 24% crude protein, and 36% lactose. Chopped straw and water were available ad libitum from arrival onward but no starter feed was provided. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 135 g/L (13.5% solids). Fecal appearance was scored daily; calves were weighed and blood was drawn on arrival and weekly thereafter. Urine and feces were collected over a 24-h period at wk 3 and 5 to determine apparent total-tract digestibility and assess gastrointestinal permeability using indigestible markers. Postprandial metabolism was evaluated at wk 4 by sequential blood sampling over 7.5 h, and the abomasal emptying rate was determined by acetaminophen appearance in blood. Fat composition in MR did not affect growth, MR intake, gastrointestinal permeability, nor nutrient digestibility. The percentage of calves with abnormal fecal scores was lower at wk 2 after arrival in calves fed VG than MX, whereas AN did not differ from the other treatments. Calves fed AN and MX had higher thiobarbituric acid reactive substances measured in serum than VG, whereas plasma ferric-reducing ability was greater in calves fed MX than VG. Postprandial acetaminophen concentrations did not differ across treatment groups, but the area under the curve was smaller in calves fed VG than in the other 2 treatments, which is indicative of a slower abomasal emptying. Postprandial serum triglyceride concentration was greater in calves fed AN than VG, whereas MX did not differ from the other treatments. Based on these outcomes, all 3 fat blends can be considered suitable for inclusion in MR for calves.

9.
J Dairy Sci ; 107(5): 2797-2817, 2024 May.
Article in English | MEDLINE | ID: mdl-37944801

ABSTRACT

Fat composition in milk replacers (MR) for calves differs from bovine milk fat in multiple ways. The aim of the study was to investigate the impact of different approaches of formulating fat in MR on growth, ad libitum intakes of MR and solid feeds, as well as blood metabolites in dairy calves. Upon 24 to 96 h after birth, 63 calves were acquired from dairy farms and incorporated into the study. Calves were blocked based on arrival day and randomly assigned within each block to one of 3 treatments differing in MR fat composition (n = 21 per group): VG was based on vegetable fats including 80% rapeseed and 20% coconut fats; AN was formulated with animal fats including 65% lard and 35% dairy cream; and MX with a mixture of 80% lard and 20% coconut fats. All 3 MR contained 30% fat, 24% crude protein, and 36% lactose and were formulated to have a fatty acid profile resembling that of milk fat. From arrival onward (3.1 ± 0.84 d of age; means ± standard deviation), calves were group housed and were offered an ad libitum supply of MR at 135 g/L (13.5% solids). Weaning was gradual and induced between wk 7 and 10, after which calves were fed only solid feeds. Starter feed, chopped straw, and water were offered ad libitum throughout the study. Calves were weighed, and blood was collected weekly until d 84 after arrival. Preweaning average daily gain was greater in calves fed AN (915 g/d) than other treatments (783 g/d), whereas no differences were detected in the weaning and postweaning phases. Preweaning MR intake was greater in calves fed AN than MX from wk 2 to 6 and was also higher in calves fed AN than VG in wk 5 and 6. Consistently, the number of rewarded visits during the ad libitum phase was greater in calves fed AN than MX, whereas VG showed no differences. This led to a higher preweaning total metabolizable energy intake in calves fed AN than in calves fed VG and MX. Serum cholesterol was higher, and serum albumin was lower in calves fed VG than other treatments. The proportion of high-density lipoprotein cholesterol in total plasma cholesterol was lower and that of low-density lipoprotein (LDL) cholesterol was higher in calves fed VG compared with other treatments. Overall, the fatty acid profile of plasma largely mirrored the MR fat composition during the preweaning period. Feeding AN enhanced MR intake and improved preweaning growth compared with other treatments. Feeding VG resulted in a marked increase in plasma cholesterol, particularly in the form of LDL cholesterol, which could be linked to an excessive intake of polyunsaturated fatty acids. These findings underscore the importance of formulating the fat content of MR to be similar to bovine milk fat.

10.
J Dairy Sci ; 107(6): 4000-4016, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246557

ABSTRACT

This study aimed to investigate the metabolic changes in the livers of dairy cows from 1 wk before dry off to 1 wk after calving. Twelve high-yielding Holstein cows were included in a longitudinal study and housed in a tiestall barn. The cows were dried off at 6 wk before the expected calving date (dry period length = 42 d). During the entire lactation, the cows were milked twice daily at 0600 and 1700 h. Liver biopsies were taken from each cow at 4 different times: wk -7 (before drying off), -5 (after drying off), -1 and +1 relative to calving. A targeted metabolomics approach was performed by liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 185 metabolites in the liver were used for the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a notable shift in metabolic phenotype from late lactation to the dry period and further changes after calving. Changes were observed in several classes of compounds, including AA and biogenic amines. In particular, the changes in acylcarnitines (AcylCN), phosphatidylcholines (PC), sphingomyelins (SM), and bile acids (BA) indicated extensive remodeling of the hepatic lipidome. The changes in AcylCN concentrations in early lactation suggest incomplete fatty acid oxidation in the liver, possibly indicating mitochondrial dysfunction or enzymatic imbalance. In addition, the changes in PC and SM species in early lactation indicate altered cell membrane composition, which may affect cell signaling and functionality. In addition, changes in BA concentrations and profiles indicate dynamic adaptations in BA synthesis, as well as lipid digestion and absorption during the observation period. In particular, principal component analysis showed an overlapping distribution of liver metabolites in primiparous and multiparous cows, indicating no significant difference between these groups. In addition, Volcano plots showed similar liver metabolism between primiparous and multiparous cows, with no significant fold changes (>1.5) in any metabolite at significant P-values (false discovery rate <0.05). These results provide valuable insight into the physiological ranges of liver metabolites during dry period and calving in healthy dairy cows and should contribute to the design and interpretation of future metabolite-based studies of the transition dairy cow.


Subject(s)
Lactation , Liver , Metabolome , Animals , Cattle , Female , Liver/metabolism , Longitudinal Studies
11.
J Dairy Sci ; 106(2): 822-842, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460512

ABSTRACT

Mobilization of body reserves including fat, protein, and glycogen is necessary to overcome phases of negative nutrient balance typical for high-yielding dairy cows during the periparturient period. Skeletal muscle, the largest internal organ in mammals, plays a crucial role in maintaining metabolic homeostasis. However, unlike in liver and adipose tissue, the metabolic and regulatory role of skeletal muscle in the adaptation of dairy cows to the physiological needs of pregnancy and lactation has not been studied extensively. The functional integrity and quality of skeletal muscle are maintained through a constant turnover of protein, resulting from both protein breakdown and protein synthesis. Thus, muscle protein breakdown (MPB) and synthesis are intimately connected and tightly controlled to ensure proper protein homeostasis. Understanding the regulation of MPB, the catabolic component of muscle turnover, and its assessment are therefore important considerations to provide information about the timing and extent of tissue mobilization in periparturient dairy cows. Based on animal models and human studies, it is now evident that MPB occurs via the integration of 3 main systems: autophagy-lysosomal, calpain Ca2+-dependent cysteine proteases, and the ubiquitin-proteasome system. These 3 main systems are interconnected and do not work separately, and the regulation is complex. The ubiquitin-proteasomal system is the most well-known cellular proteolytic system and plays a fundamental role in muscle physiology. Complete degradation of a protein often requires a combination of the systems, depending on the physiological situation. Determination of MPB in dairy cows is technically challenging, resulting in a relative dearth of information. The methods for assessing MPB can be divided into either direct or indirect measurements, both having their strengths and limitations. Available information on the direct measures of MPB primarily comes from stable isotopic tracer methods and those of indirect measurements from assessing expression and activity measures of the components of the 3 MPB systems in muscle biopsy samples. Other indirect approaches (i.e., potential indicators of MPB), including ultrasound imaging and measuring metabolites from muscle degradation (i.e., 3-methylhistidine and creatinine), seem to be applicable methods and can provide useful information about the extent and timing of MPB. This review presents our current understanding, including methodological considerations, of the process of MPB in periparturient dairy cows.


Subject(s)
Lactation , Muscle Proteins , Muscle, Skeletal , Peripartum Period , Pregnancy, Animal , Proteolysis , Animals , Cattle , Female , Pregnancy , Adipose Tissue/metabolism , Diet/veterinary , Lactation/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Peripartum Period/metabolism , Pregnancy, Animal/metabolism
12.
J Dairy Sci ; 106(2): 807-821, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460514

ABSTRACT

The purpose of this article is to review body condition scoring and the role of body fat reserves in relation to insulin sensitivity and metabolic phenotyping. This article summarizes body condition scoring assessment methods and the differences between subcutaneous and visceral fat depots in dairy cows. The mass of subcutaneous and visceral adipose tissue (AT) changes significantly during the transition period; however, metabolism and intensity of lipolysis differ between subcutaneous and visceral AT depots of dairy cows. The majority of studies on AT have focused on subcutaneous AT, and few have explored visceral AT using noninvasive methods. In this systematic review, we summarize the relationship between body fat reserves and insulin sensitivity and integrate omics research (e.g., metabolomics, proteomics, lipidomics) for metabolic phenotyping of cows, particularly overconditioned cows. Several studies have shown that AT insulin resistance develops during the prepartum period, especially in overconditioned cows. We discuss the role of AT lipolysis, fatty acid oxidation, mitochondrial function, acylcarnitines, and lipid insulin antagonists, including ceramide and glycerophospholipids, in cows with different body condition scoring. Nonoptimal body conditions (under- or overconditioned cows) exhibit marked abnormalities in metabolic and endocrine function. Overall, reducing the number of cows with nonoptimal body conditions in herds seems to be the most practical solution to improve profitability, and dairy farmers should adjust their management practices accordingly.


Subject(s)
Cattle Diseases , Insulin Resistance , Female , Cattle , Animals , Insulin/metabolism , Lactation , Adipose Tissue/metabolism , Lipolysis , Diet/veterinary , Cattle Diseases/metabolism
13.
J Dairy Sci ; 106(5): 3662-3679, 2023 May.
Article in English | MEDLINE | ID: mdl-37002139

ABSTRACT

The ratio of n-6 to n-3 fatty acid (FA) is between 2 and 10 times higher in milk replacer (MR) than in whole milk, which may promote inflammation and compromise the integrity of the intestinal epithelium. To evaluate how decreasing the n-6:n-3 FA ratio of MR affects gastrointestinal (GIT) permeability and inflammatory status, 30 dairy calves (2.8 ± 1.06 d of age; mean ± standard deviation) were randomly assigned to be fed an MR with an n-6:n-3 FA ratio of 40:1 (CON; 29.3% crude fat of DM; n = 15) or 6.5:1 (n-3; 29.1% crude fat of DM; n = 15). Calves were fed 7.0 L/d in 2 meals. Calves were weighed and fecal consistency was analyzed weekly. On d 22, calves were administered Cr-EDTA, lactulose, and d-mannitol to assess GIT permeability. Blood and total urine were sequentially collected for 6 and 24 h, respectively, and analyzed for marker content. Whole blood collected 4 h after the meal was subjected to an ex vivo lipopolysaccharide (LPS) challenge to evaluate cytokine secretion from blood cells. Calves were euthanized on d 25 for collection of intestinal tissue samples. Tissue samples were processed to assess FA composition by gas chromatography, histomorphology by bright-field microscopy, and gene expression of tight junction proteins, lipid metabolism enzymes, and immune molecules by real-time quantitative PCR. Data were analyzed using PROC GLIMMIX in SAS (version 9.4, SAS Institute Inc.). Growth performance and fecal consistency were unaffected. Calves fed MR with a lower ratio of n-6 to n-3 FA had 2-fold higher n-3 FA contents and 2-fold lower ratios of n-6 to n-3 FA in proximal jejunum and ileum tissues. Total urinary recovery (0-24 h relative to marker administration) and plasma concentrations of the markers were unaffected. Expression of TJP1 tended to be higher in proximal jejunum tissue and lower in ileum tissue of n-3 calves. The expression of TLR4 and TNFA tended to be higher and CD14 was higher in ileum tissue of n-3 calves. Plasma concentrations of interleukin-4 were decreased in response to the ex vivo LPS challenge in n-3 calves. Histomorphology and GIT permeability were largely unaffected by treatment. Furthermore, the inclusion of linseed and algae oil may promote inflammation, as suggested by greater concentrations of the acute-phase proteins haptoglobin and serum amyloid A postprandially, demonstrating that fat sources should be evaluated for their suitability for MR formulations. Understanding how MR composition affects dairy calf health may improve nutritional strategies on farm.


Subject(s)
Fatty Acids, Omega-3 , Milk Substitutes , Animals , Cattle , Milk , Diet/veterinary , Lipopolysaccharides , Permeability , Animal Feed/analysis , Weaning , Body Weight
14.
J Dairy Sci ; 106(4): 2408-2427, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36894427

ABSTRACT

The composition of milk replacer (MR) for calves greatly differs from that of bovine whole milk, which may affect gastrointestinal development of young calves. In this light, the objective of the current study was to compare gastrointestinal tract structure and function in response to feeding liquid diets having a same macronutrient profile (e.g., fat, lactose, protein) in calves in the first month of life. Eighteen male Holstein calves (46.6 ± 5.12 kg; 1.4 ± 0.50 d of age at arrival; mean ± standard deviation) were housed individually. Upon arrival, calves were blocked based on age and arrival day, and, within a block, calves were randomly assigned to either a whole milk powder (WP; 26% fat, DM basis, n = 9) or a MR high in fat (25% fat, n = 9) fed 3.0 L 3 times daily (9 L total per day) at 135 g/L through teat buckets. On d 21, gut permeability was assessed with indigestible permeability markers [chromium (Cr)-EDTA, lactulose, and d-mannitol]. On d 32 after arrival, calves were slaughtered. The weight of the total forestomach without contents was greater in WP-fed calves. Furthermore, duodenum and ileum weights were similar between treatment groups, but jejunum and total small intestine weights were greater in WP-fed calves. The surface area of the duodenum and ileum did not differ between treatment groups, but the surface area of the proximal jejunum was greater in calves fed WP. Urinary lactulose and Cr-EDTA recoveries were greater in calves fed WP in the first 6 h post marker administration. Tight junction protein gene expression in the proximal jejunum or ileum did not differ between treatments. The free fatty acid and phospholipid fatty acid profiles in the proximal jejunum and ileum differed between treatments and generally reflected the fatty acid profile of each liquid diet. Feeding WP or MR altered gut permeability and fatty acid composition of the gastrointestinal tract and further investigation are needed to understand the biological relevance of the observed differences.


Subject(s)
Milk Substitutes , Milk , Animals , Cattle , Male , Milk/metabolism , Powders , Diet/veterinary , Edetic Acid/metabolism , Lactulose/metabolism , Gastrointestinal Tract/metabolism , Fatty Acids/metabolism , Animal Feed/analysis , Weaning , Milk Substitutes/metabolism , Body Weight
15.
J Dairy Sci ; 106(12): 9822-9842, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641324

ABSTRACT

The current study was conducted to examine the effect of l-carnitine (LC) supplementation on telomere length and mitochondrial DNA copy number (mtDNAcn) per cell in mid-lactation cows challenged by lipopolysaccharide (LPS) in blood and liver. The mRNA abundance of 31 genes related to inflammation, oxidative stress, and the corresponding stress response mechanisms, the mitochondrial quality control and the protein import system, as well as the phosphatidylinositol 3-kinase/protein kinase B pathway, were assessed using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to comparing the responses in cows with or without LC, our objectives were to characterize the oxidative and inflammatory status by assessing the circulating concentration of lactoferrin (Lf), haptoglobin (Hp), fibrinogen, derivates of reactive oxygen metabolites (dROM), and arylesterase activity (AEA), and to extend the measurement of Lf and Hp to milk. Pluriparous Holstein cows were assigned to either a control group (CON, n = 26) or an LC-supplemented group (CAR; 25 g LC/cow per day; d 42 ante partum to d 126 postpartum (PP), n = 27). On d 111 PP, each cow was injected intravenously with LPS (Escherichia coli O111:B4, 0.5 µg/kg). The mRNA abundance was examined in liver biopsies of d -11 and +1 relative to LPS administration. Plasma and milk samples were frequently collected before and after the challenge. After LPS administration, circulating plasma fibrinogen and serum dROM concentrations increased, whereas AEA decreased. Moreover, serum P4 initially increased by 3 h after LPS administration and declined thereafter irrespective of grouping. The Lf concentrations increased in both groups after LPS administration, with the CAR group showing greater concentrations in serum and milk than the CON group. After LPS administration, telomere length in blood increased, whereas mtDNAcn per cell decreased; however, both remained unaffected in liver. For mitochondrial protein import genes, the hepatic mRNA abundance of the translocase of the mitochondrial inner membrane (TIM)-17B was increased in CAR cows. Moreover, TIM23 increased in both groups after LPS administration. Regarding the mRNA abundance of genes related to stress response mechanisms, 7 out of 14 genes showed group × time interactions, indicating a (local) protective effect due to the dietary LC supplementation against oxidative stress in mid-lactating dairy cows. For mtDNAcn and telomere length, the effects of the LPS-induced inflammation were more pronounced than the dietary supplementation of LC. Dietary LC supplementation affected the response to LPS primarily by altering mitochondrial dynamics. Regarding mRNA abundance of genes related to the mitochondrial protein import system, the inner mitochondrial membrane translocase (TIM complex) seemed to be more sensitive to dietary LC than the outer mitochondrial membrane translocase (TOM complex).


Subject(s)
Cattle Diseases , Lactation , Female , Cattle , Animals , Lactation/physiology , Lipopolysaccharides/adverse effects , Carnitine/metabolism , DNA, Mitochondrial , DNA Copy Number Variations , Mitochondrial Dynamics , Inflammation/veterinary , Dietary Supplements , Liver/metabolism , Milk/metabolism , Diet/veterinary , Gene Expression , Fibrinogen/adverse effects , Fibrinogen/metabolism , RNA, Messenger/metabolism , Mitochondrial Proteins/metabolism , Telomere , Cattle Diseases/metabolism
16.
J Dairy Sci ; 105(10): 8509-8522, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055854

ABSTRACT

Telomeres cap the ends of eukaryotic chromosomes, and the telomere length (TL) is related to cellular age. The mitochondrial DNA copy number (mtDNAcn) reflects the abundance of mitochondria in a cell. In addition to generating energy, mitochondria are also the main producers of reactive oxygen species, which in turn can accelerate TL attrition and impair mitochondrial function. Nutrition in early life could influence mtDNAcn and TL in later life. In the present study, we investigated the effects of feeding different levels of milk replacer (MR) on TL shortening and energetic status by examining mtDNAcn of heifers during their first year of life. In this study, whole blood samples were obtained from German Holstein heifer calves 36 to 48 h after birth (wk 1) and at wk 12 and wk 16 of life (n = 37), as well as from 31 calves when reaching 1 yr of age. Calves were fed either a high level of MR (14% solids) at 10 L/d (1.4 kg of MR/d; n = 18) or a restrictive low level at 5.7 L/d (0.8 kg of MR/d; n = 19) until linear weaning in wk 13 to 14 of life. Additional whole blood samples were taken from their respective dams 36 to 48 h after calving. Relative TL (qT) and mtDNAcn in cells from whole blood were measured by multiplex quantitative PCR. The greatest qT values were observed in neonates (36-48 h after birth), with decreasing qT values thereafter. Delta qT values were calculated as ΔqT = qT (first year of life) - initial qT (36-48 h after birth). We found no effect of the feeding regimen on qT values, but qT decreased with age. The mtDNAcn was lowest in neonates, increased until wk 12 of life, and then remained at a constant level until after weaning (wk 16). After the first year of life, mtDNAcn was decreased and returned to levels comparable to those of the neonatal stage. No differences in mtDNAcn were detectable between feeding groups within each time point. When comparing the values of qT and mtDNAcn between the calves and their dams after calving (36-48 h after birth and after calving), greater values were observed in calves than in dams. Delta qT values were negative in all but 2 calves (on the restricted diet), indicating that the change in TL with age was not uniform among individual animals, whereas no difference in mean ΔqT values occurred between the feeding groups. Additional analyses of the correlation between qT, mtDNAcn, and various indicators of oxidative status from birth until wk 16 of life did not indicate major interactions between oxidative status, qT and mtDNAcn. The results of this study support an age-dependent decrease of TL in calves independent of the MR feeding level and show the dynamic changes of mtDNAcn in early life.


Subject(s)
Animal Feed , Diet , Animal Feed/analysis , Animals , Cattle , DNA Copy Number Variations , DNA, Mitochondrial , Diet/veterinary , Female , Milk/metabolism , Mitochondria , Reactive Oxygen Species/metabolism , Telomere , Weaning
17.
J Dairy Sci ; 105(8): 7079-7096, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35840411

ABSTRACT

Biotin (B8), folates (B9), and vitamin B12 (B12) are involved and interrelated in several metabolic reactions related to energy and protein metabolism. We hypothesized that a low supply of one of the latter vitamins during the transition period would impair metabolic status. The purpose of this study was to evaluate the effect of B8 supplementation on the response of lactation performance and selected energy and protein metabolites and hormones to a combined supplementation of B9 and B12 given to periparturient dairy cows, from d -21 to 21 relative to calving. A total of 32 multiparous Holstein cows housed in tie stalls were randomly assigned, according to their previous 305-d milk yield, to 8 incomplete blocks of 4 treatments: (1) a 2-mL weekly i.m. injection of saline (0.9% NaCl; B8-/B9B12-); (2) 20 mg/d of dietary B8 (unprotected from ruminal degradation) and 2-mL weekly i.m. injection of 0.9% NaCl (B8+/B9B12-); (3) 2.6 g/d of dietary B9 (unprotected) and 2-mL weekly i.m. injection of 10 mg of B12 (B8-/B9B12+); and (4) 20 mg/d of dietary B8, 2.6 g/d of dietary B9, and weekly i.m. injection of 10 mg of B12 (B8+/B9B12+) in a 2 × 2 factorial arrangement. Milk yield and dry matter intake were obtained daily and milk components weekly. Blood samples were taken weekly from d -21 to calving and 3 times per week from calving to 21 d following parturition. Prepartum plasma concentrations of glucose, insulin, nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB), and adiponectin were unaffected by treatments. Biotin, B9, and B12 supplements increased their respective concentrations in plasma and milk. Cows fed the B8 supplement tended to have lower dry matter intake, but only cows in B8+/B9B12- had greater plasma concentrations of NEFA compared with B8-/B9B12-. Milk and total solid yields were greater by 13.5 and 13.9%, respectively, for B8-/B9B12+ [45.5 (standard error, SE: 1.8) and 5.81 (0.22) kg/d, respectively] compared with B8-/B9B12- [40.1 (1.9) and 5.10 (0.23) kg/d, respectively], but these effects were suppressed when combined with the B8 supplement. Cows in the B8-/B9B12+ group had decreased plasma insulin and tended to have increased NEFA concentrations, but postpartum plasma concentrations of glucose, BHB, leptin, and adiponectin were not affected. These cows also mobilized more body fat reserves, as suggested by a tendency to increased plasma NEFA and more milk total solids compared with B8-/B9B12- cows. However, plasma concentrations of BHB and adiponectin were similar among treatments. This suggests that the B9 and B12 supplements enhanced efficiency of energy metabolism in early lactation cows. Folic acid and B12 supplementation increased postpartum plasma Cys and homocysteine concentrations but did not affect plasma Met concentration, suggesting an upregulation of the transsulfuration pathway. In summary, our results showed that, under the current experimental conditions, increasing B8 supply did not improve responses to the B9 and B12 supplementation.


Subject(s)
Insulins , Vitamin B 12 , 3-Hydroxybutyric Acid , Adiponectin/metabolism , Animals , Biotin/pharmacology , Cattle , Diet/veterinary , Dietary Supplements , Energy Metabolism/physiology , Fatty Acids, Nonesterified , Female , Folic Acid/metabolism , Glucose/metabolism , Lactation/physiology , Milk/metabolism , Postpartum Period , Saline Solution/metabolism , Saline Solution/pharmacology , Vitamin B 12/pharmacology , Vitamins/metabolism
18.
J Dairy Sci ; 105(8): 6670-6692, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35787324

ABSTRACT

Milk replacers (MR) for calves usually contain more lactose and less fat than bovine whole milk (WM). There are insufficient data to determine whether these MR formulations are optimal for calves fed at high planes of nutrition. Thus, the effect of 3 MR formulations and a WM powder were evaluated on growth, feeding behavior, and blood metabolites in 96 male Holstein calves fed ad libitum and with 45.5 ± 4.30 kg (mean ± standard deviation) BW at arrival. Calves were blocked based on arrival sequence, and randomly assigned within block to one of the 4 treatments (n = 24 calves/group): a high-fat MR (25.0% fat, dry matter basis; 22.5% protein, 38.6% lactose; 21.3 MJ/kg; HF), a high lactose MR (44.6% lactose, 22.5% protein, 18.0% fat; 19.7 MJ/kg; HL), a high protein MR (26.0% protein, 18.0% fat, 41.5% lactose; 20.0 MJ/kg; HP), and a WM powder (26.0% fat; 24.5% protein, 38.0% lactose; 21.6 MJ/kg; WP). In the first 2 wk after arrival, calves were individually housed and were fed 3.0 L of their respective liquid feed 3 times daily at 135 g/L. They were then moved to group housing and fed ad libitum until d 42 after arrival. Weaning was gradual and took place between d 43 and 70 after arrival; thereafter, calves were fed solids only. Concentrates, chopped straw, and water were available ad libitum throughout the study. Body weight was measured, and blood was collected at arrival and then weekly thereafter from wk 1 to 12. Weight gain and height were greater in HL than WP calves. In the preweaning phase, HL and HP-fed calves consumed more milk than WP, and HL-fed calves consumed more milk than HF calves. In wk 10, starter feed intakes were lower in HF calves than in the other groups. In the preweaning phase, ME intakes were the same for all treatments. This suggests that milk intakes were regulated by the energy density of the milk supplied. The percentage of calves requiring therapeutic interventions related to diarrhea was greater in WP-fed calves (29%) than HF and HL calves (4%), whereas HP (13%) did not differ with other groups. This was coupled with lower blood acid-base, blood gas, and blood sodium in WP than in MR-fed calves. Calves fed HF had greater serum nonesterified fatty acids compared with other groups, and greater serum amyloid A compared with WP and HL calves. Among the serum parameters, insulin-like growth factor-1 and lactate dehydrogenase correlated positively with ME intake and average daily gain. The high lactose and protein intakes in HL and HP calves led to greater insulin-like growth factor-1 concentrations than in WP-fed calves. Although growth differences were limited among MR groups, the metabolic profile largely differed and these differences require further investigation.


Subject(s)
Milk Substitutes , Milk , Animal Feed/analysis , Animals , Body Weight , Cattle , Diet/veterinary , Feeding Behavior , Insulin-Like Growth Factor I/metabolism , Lactose/metabolism , Male , Milk/metabolism , Nutrients , Powders , Weaning
19.
J Dairy Sci ; 105(7): 6327-6338, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35525619

ABSTRACT

The objectives of this study were (1) to characterize the interindividual variation in the relationship between antepartum (ap) backfat thickness (BFT) and subsequent BFT loss during early lactation in a large dairy herd using cluster analysis; (2) to compare the serum concentrations of metabolites (nonesterified fatty acids, ß-hydroxybutyrate), metabolic hormones (leptin and adiponectin), and an inflammatory marker (haptoglobin) among the respective clusters; and (3) to compare lactation performance and uterine health status in the different clusters. An additional objective was (4) to investigate differences in these serum variables and in milk yield of overconditioned (OC) cows that differed in the extent of BFT loss. Using data from a large study of 1,709 multiparous Holstein cows, we first selected those animals from which serum samples and BFT results (mm) were available at d 25 (±10) ap and d 31 (±3 d) postpartum (pp). The remaining 713 cows (parity of 2 to 7) were then subjected to cluster analysis: different approaches based on the BFT of the cows were performed. K-means (unsupervised machine learning algorithm) clustering based on BFT-ap alone identified 5 clusters: lean (5-8 mm BFT, n = 50), normal (9-12 mm, n = 206), slightly fat (SF; 13-16 mm, n = 203), just fat (JF; 16-22 mm, n = 193), and very fat (VF; 23-43 mm, n = 61). Clustering by difference between BFT-ap and BFT-pp (ΔBFT) also revealed 5 clusters: extreme loss (17-23 mm ΔBFT, n = 16), moderate loss (9-15 mm, n = 119), little loss (4-8 mm, n = 326), no loss (0-3 mm, n = 203), and gain (-8 to -1 mm, n = 51). Based on the blood variables measured, our results confirm that cows with greater BFT losses had higher lipid mobilization and ketogenesis than cows with less BFT loss. The serum variables of cows that gained BFT did not differ from normal cows. Milk yield was affected by the BFT-ap cluster, but not by the ΔBFT cluster. Cows categorized as VF had lesser milk yield than other clusters. We further compared the OC cows that had little or no BFT loss (i.e., 2% of VF, 12% of JF, and 31% of SF, OC-no loss, n = 85) with the OC cows that lost BFT (OC-loss, n = 135). Both NEFA and BHB pp concentrations and milk yield were greater in OC-loss cows compared with the OC-no loss cows. The serum concentration of leptin ap was greater in OC-loss than in the OC-no loss cows. Overall, OC cows lost more BFT than normal or lean cows. However, those OC cows with a smaller loss of BFT produced less milk than OC cows with greater losses.


Subject(s)
Lactation , Leptin , 3-Hydroxybutyric Acid , Animals , Cattle , Diet/veterinary , Fatty Acids, Nonesterified , Female , Leptin/metabolism , Milk/metabolism , Parity , Postpartum Period , Pregnancy
20.
J Dairy Sci ; 104(10): 11291-11305, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34334194

ABSTRACT

Postnatal metabolism depends on maturation of key metabolic pathways around birth. In this regard, endogenous glucose production is impaired in calves born preterm. Concerning protein metabolism, the rates of protein turnover are greater during the neonatal period than at any other period of postnatal life. The mammalian target of rapamycin (mTOR) and the ubiquitin-proteasome system (UPS) are considered as the major regulators of cellular protein turnover. The objectives of this study were to investigate (1) the changes in plasma AA profiles, (2) the mRNA abundance of mTOR signaling and UPS-related genes in skeletal muscle, and (3) the mRNA abundance of branched-chain AA (BCAA) catabolic enzymes in skeletal muscle and adipose tissue in neonatal calves with different degree of maturation during the transition to extrauterine life. Calves (n = 7/treatment) were born either preterm (PT; delivered by cesarean section 9 d before term) or at term (T; spontaneous vaginal delivery) and were left unfed for 1 d. Calves in treatment TC were also spontaneously born but were fed colostrum and transition milk for 4 d. Blood samples were collected from all calves at birth and at 24 h of life. Additional blood samples were taken 2 h after feeding (26 h of life) for PT and T calves, and on d 4 of life for TC, to determine plasma glucose, urea, and AA. Tissue samples from 3 muscles [M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM)], and kidney fat were collected following euthanasia at 26 h after birth (PT, T) or on d 4 of life (TC) at 2 h after feeding. The concentrations of the majority of plasma AA (Ala, Gln, Asn, Cit, Lys, Orn, Thr, and Tyr), nonessential AA, and total AA were greater during the first 24 h and also before and 2 h after feeding in PT than in T. The ratio of plasma BCAA to the aromatic AA (Tyr and Phe) was greatest in TC, followed by T, and least in PT. The mRNA abundance of mTOR and ribosomal protein S6 kinase 1 (S6K1) in MLD and MM was greater in PT and T than in TC. The mRNA abundance of muscle-specific ligases FBXO32 (F-box only protein 32) in the 3 different skeletal muscles and TRIM63 (tripartite motif containing 63) in MLD was greater in PT and T than in TC; in MM, TRIM63 mRNA was greatest in PT. The mRNA for BCKDHA and BCKDHB (the α and ß polypeptide of branched-chain α-keto acid dehydrogenase) in kidney fat was elevated in PT and T compared with TC, suggesting a possible enhancement of BCAA oxidation as energy source to cover the energetic and nutritional postnatal demands in PT and T in a starved state. The increased abundances of mTOR-associated signaling factors and muscle-specific ligase mRNA indicate a greater rate of protein turnover in muscles of PT and T in a starved state. Elevated plasma concentrations of several AA may result from enhanced muscle proteolysis and impaired conversion to glucose in the liver of PT calves.


Subject(s)
Cesarean Section , Muscle Proteins , Adipose Tissue/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Cattle , Cesarean Section/veterinary , Diet , Female , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Pregnancy , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL