ABSTRACT
The gravitational pressure in many astrophysical objects exceeds one gigabar (one billion atmospheres)1-3, creating extreme conditions where the distance between nuclei approaches the size of the K shell. This close proximity modifies these tightly bound states and, above a certain pressure, drives them into a delocalized state4. Both processes substantially affect the equation of state and radiation transport and, therefore, the structure and evolution of these objects. Still, our understanding of this transition is far from satisfactory and experimental data are sparse. Here we report on experiments that create and diagnose matter at pressures exceeding three gigabars at the National Ignition Facility5 where 184 laser beams imploded a beryllium shell. Bright X-ray flashes enable precision radiography and X-ray Thomson scattering that reveal both the macroscopic conditions and the microscopic states. The data show clear signs of quantum-degenerate electrons in states reaching 30 times compression, and a temperature of around two million kelvins. At the most extreme conditions, we observe strongly reduced elastic scattering, which mainly originates from K-shell electrons. We attribute this reduction to the onset of delocalization of the remaining K-shell electron. With this interpretation, the ion charge inferred from the scattering data agrees well with ab initio simulations, but it is significantly higher than widely used analytical models predict6.
ABSTRACT
The study of high-velocity particle-laden flow interactions is of importance for the understanding of a wide range of natural phenomena, ranging from planetary formation to cloud interactions. Experimental observations of particle dynamics are sparse given the difficulty of generating high-velocity flows of many particles. Ejecta microjets are micron-scale jets formed by strong shocks interacting with imprinted surfaces to generate particle plumes traveling at several kilometers per second. As such, the interaction of two ejecta microjets provides a novel experimental methodology to study interacting particle streams. In this Letter, we report the first time sequences of x-ray radiography images of two interacting tin ejecta microjets taken on a platform designed for the OMEGA Extended Performance (OMEGA EP) laser. We observe that the microjets pass through each other unattenuated for the case of 11.7±3.2 GPa shock pressures and jet velocities of 2.2±0.5 km/s but show strong interaction dynamics for 116.0±6.1 GPa shock pressures and jet velocities of 6.5±0.5 km/s. We find that radiation-hydrodynamic simulations of the experiments are able to capture many aspects of the collisional behavior, such as the attenuation of jet velocity in the direction of propagation, but are unable to match the full spread of the strongly interacting cloud.
ABSTRACT
We present results for the ionic structure in hydrocarbons (polystyrene, polyethylene) that were shock compressed to pressures of up to 190 GPa, inducing rapid melting of the samples. The structure of the resulting liquid is then probed using in situ diffraction by an x-ray free electron laser beam, demonstrating the capability to obtain reliable diffraction data in a single shot, even for low-Z samples without long range order. The data agree well with ab initio simulations, validating the ability of such approaches to model mixed samples in states where complex interparticle bonds remain, and showing that simpler models are not necessarily valid. While the results clearly exclude the possibility of complete carbon-hydrogen demixing at the conditions probed, they also, in contrast to previous predictions, indicate that diffraction is not always a sufficient diagnostic for this phenomenon.
ABSTRACT
We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of â¼5×10^{18} W/cm^{2} are focused into plasmas with electron densities of â¼1×10^{19} cm^{-3}, they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10-20 keV, and 2D particle-in-cell simulations were used to model the acceleration and radiation of the electrons in our experimental conditions.
ABSTRACT
Gene dosage of the apolipoprotein E (APOE) epsilon 4 allele is a major risk factor for familial Alzheimer disease (AD) of late onset (after age 60). Here we studied a large series of 115 AD case subjects and 243 controls as well as 150 affected and 197 unaffected members of 66 AD families. Our data demonstrate a protective effect of the epsilon 2 allele, in addition to the dose effect of the epsilon 4 allele in sporadic AD. Although a substantial proportion (65%) of AD is attributable to the presence of epsilon 4 alleles, risk of AD is lowest in subjects with the epsilon 2/epsilon 3 genotype, with an additional 23% of AD attributable to the absence of an epsilon 2 allele. The opposite actions of the epsilon 2 and epsilon 4 alleles further support the direct involvement of APOE in the pathogenesis of AD.
Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Age of Onset , Aged , Alleles , Alzheimer Disease/etiology , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged , Odds Ratio , Risk FactorsABSTRACT
The composition of nutrient-removing microbial communities in five full-scale membrane bioreactors (MBRs) was investigated using fluorescence in situ hybridization and 16S rRNA pyrosequencing and compared to similar analyses of conventional activated sludge (CAS) communities. The communities were highly similar but some genera that are always present in enhanced biological phosphorus removal (EBPR) (core groups) were absent in the MBRs. The overall phylogenetic similarity of the communities indicated that these differences were primarily closely related groups. More research is needed to establish the operational significance of the observed differences between MBR and CAS sludge.
Subject(s)
Bioreactors , Sewage/microbiology , Waste Disposal, Fluid/methods , Bacteria/classification , Bacteria/genetics , In Situ Hybridization, Fluorescence , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Water MicrobiologyABSTRACT
Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called 'The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)'. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.
Subject(s)
Databases, Factual , Sewage/microbiology , Waste Disposal, Fluid , Bacteria/genetics , Denmark , In Situ Hybridization, Fluorescence , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/geneticsABSTRACT
BACKGROUND: The onset of mild cognitive impairment (MCI) is an essential outcome in Alzheimer's disease (AD) prevention trials and a compelling milestone for clinically meaningful change. Determining MCI, however, may be variable and subject to disagreement. Adjudication procedures may improve the reliability of these determinations. We report the performance of an adjudication committee for an AD prevention trial. METHODS: The TOMMORROW prevention trial selected cognitively normal participants at increased genetic risk for AD and randomized them to low-dose pioglitazone or placebo treatment. When adjudication criteria were triggered, a participant's clinical information was randomly assigned to a three-member panel of a six-member independent adjudication committee. Determination of whether or not a participant reached MCI due to AD or AD dementia proceeded through up to three review stages - independent review, collaborative review, and full committee review - requiring a unanimous decision and ratification by the chair. RESULTS: Of 3494 participants randomized, the committee adjudicated on 648 cases from 386 participants, resulting in 96 primary endpoint events. Most participants had cases that were adjudicated once (n = 235, 60.9%); the rest had cases that were adjudicated multiple times. Cases were evenly distributed among the eight possible three-member panels. Most adjudicated cases (485/648, 74.8%) were decided within the independent review (stage 1); 14.0% required broader collaborative review (stage 2), and 11.1% needed full committee discussion (stage 3). The primary endpoint event decision rate was 39/485 (8.0%) for stage 1, 29/91 (31.9%) for stage 2, and 28/72 (38.9%) for stage 3. Agreement between the primary event outcomes supported by investigators' clinical diagnoses and the decisions of the adjudication committee increased from 50% to approximately 93% (after around 100 cases) before settling at 80-90% for the remainder of the study. CONCLUSIONS: The adjudication process was designed to provide independent, consistent determinations of the trial endpoints. These outcomes demonstrated the extent of uncertainty among trial investigators and agreement between adjudicators when the transition to MCI due to AD was prospectively assessed. These methods may inform clinical endpoint determination in future AD secondary prevention studies. Reliable, accurate assessment of clinical events is critical for prevention trials and may mean the difference between success and failure.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Cognitive Dysfunction/complications , Cognitive Dysfunction/drug therapy , Pioglitazone/therapeutic use , Reproducibility of Results , Research DesignABSTRACT
We present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, [Formula: see text], also called mylar) shock-compressed to ([Formula: see text]) GPa and ([Formula: see text]) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.
ABSTRACT
The É4 allele of the apolipoprotein E (APOE) gene is currently the strongest and most highly replicated genetic factor for risk and age of onset of late-onset Alzheimer's disease (LOAD). Using phylogenetic analysis, we have identified a polymorphic poly-T variant, rs10524523, in the translocase of outer mitochondrial membrane 40 homolog (TOMM40) gene that provides greatly increased precision in the estimation of age of LOAD onset for APOE É3 carriers. In two independent clinical cohorts, longer lengths of rs10524523 are associated with a higher risk for LOAD. For APOE É3/4 patients who developed LOAD after 60 years of age, individuals with long poly-T repeats linked to APOE É3 develop LOAD on an average of 7 years earlier than individuals with shorter poly-T repeats linked to APOE É3 (70.5 ± 1.2 years versus 77.6 ± 2.1 years, P=0.02, n=34). Independent mutation events at rs10524523 that occurred during Caucasian evolution have given rise to multiple categories of poly-T length variants at this locus. On replication, these results will have clinical utility for predictive risk estimates for LOAD and for enabling clinical disease prevention studies. In addition, these results show the effective use of a phylogenetic approach for analysis of haplotypes of polymorphisms, including structural polymorphisms, which contribute to complex diseases.
Subject(s)
Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Genetic Predisposition to Disease , Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide , Age of Onset , Aged , Aged, 80 and over , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Case-Control Studies , Cohort Studies , DNA/genetics , Female , Genetic Testing , Humans , Linkage Disequilibrium , Male , Mitochondrial Precursor Protein Import Complex Proteins , Phylogeny , Predictive Value of Tests , RiskABSTRACT
The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures up to thousands of kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interiors. Here, we demonstrate the feasibility of X-ray Thomson scattering to quantify the degree of species separation in a 1:1 carbon-hydrogen mixture at a pressure of ~150 GPa and a temperature of ~5000 K. Our measurements provide absolute values of the structure factor that encodes the microscopic arrangement of the particles. From these data, we find a lower limit of [Formula: see text]% of the carbon atoms forming isolated carbon clusters. In principle, this procedure can be employed for investigating the miscibility behaviour of any binary mixture at the high-pressure environment of planetary interiors, in particular, for non-crystalline samples where it is difficult to obtain conclusive results from X-ray diffraction. Moreover, this method will enable unprecedented measurements of mixing/demixing kinetics in dense plasma environments, e.g., induced by chemistry or hydrodynamic instabilities.
ABSTRACT
The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.
Subject(s)
Alleles , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Gene Frequency , Aged , Aged, 80 and over , Aging , Alzheimer Disease/metabolism , Alzheimer Disease/mortality , Amyloid beta-Peptides/metabolism , Apolipoprotein E4 , Apolipoproteins E/physiology , Female , Genotype , Homozygote , Humans , Linkage Disequilibrium , Male , Risk Factors , Survival RateABSTRACT
We investigated the high-pressure behavior of polyethylene (CH2) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A2/m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.
ABSTRACT
We are developing a long-duration K-α x-ray source at the Omega laser facility. Such sources are important for x-ray scattering measurements at small scattering angles where high spectral resolution is required. To date, He-α x-ray sources are the most common probes in scattering experiments, using ns-class lasers to heat foils to keV temperatures, resulting in K-shell emission from He-like charge states. The He-α spectrum can be broadened by emission from multiple charge states and lines (e.g., He-like, Li-like, Be-like). Here, we combine the long duration of He-α sources with the narrow spectral bandwidth of cold K-α emission. A Ge foil is irradiated by the Omega laser, producing principally Ge He-α emission, which pumps Zn K-α emission at 8.6 keV from a nearby Zn layer. Using this technique, we demonstrate a long-duration Zn K-α source suitable for scattering measurements. Our experimental results show a 60% reduction in spectral bandwidth compared to a standard Zn He-α source, significantly improving the measurement precision of scattering experiments with small inelastic shifts.
ABSTRACT
We have developed and fielded a new x-ray pinhole-imaging snout that exploits time-resolved penumbral imaging of low-emission hot spots in capsule implosion experiments at the National Ignition Facility. We report results for a series of indirectly driven Be capsule implosions that aim at measuring x-ray Thomson scattering (XRTS) spectra at extreme density conditions near stagnation. In these implosions, x-ray emission at stagnation is reduced by 100-1000× compared to standard inertial confinement fusion (ICF) implosions to mitigate undesired continuum background in the XRTS spectra. Our snout design not only enables measurements of peak x-ray emission times, t o , where standard ICF diagnostics would not record any signal, but also allows for inference of hot spot shapes. Measurement of t o is crucial to account for shot-to-shot variations in implosion velocity and therefore to benchmark the achieved plasma conditions between shots and against radiation hydrodynamic simulations. Additionally, we used differential filtering to infer a hot spot temperature of 520 ± 80 eV, which is in good agreement with predictions from radiation hydrodynamic simulations. We find that, despite fluctuations of the x-ray flash intensity of up to 5×, the emission time history is similar from shot to shot and slightly asymmetric with respect to peak x-ray emission.
ABSTRACT
X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH2 targets on the OMEGA laser facility at the Laboratory for Laser Energetics in Rochester, NY. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Knowledge gained in this experiment shows a promising future for further XRTS measurements on indirectly driven OMEGA targets.
ABSTRACT
We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.
ABSTRACT
The beta-phosphoro[35S]thioate analogue of UDP-glucose ((beta-35S)UDP-Glc) is utilized with approximately the same efficiency as the parent compound by the UDP-glucose:glycoprotein glucose-1-phosphotransferase (glucosyltransferase), which catalyzes the transfer of alpha Glc-1-P from UDP-Glc to mannose-containing oligosaccharides on acceptor glycoproteins. The same endogenous acceptor glycoproteins are labeled by the glucosyltransferase using [beta-32P]UDP-Glc and (beta-35S)UDP-Glc. However, in liver homogenates, incorporation from [beta-32P]UDP-Glc ceases to increase after about 4 min of incubation, while incorporation from (beta-35S)UDP-Glc persists for at least 1 h. This difference is due to an approx. 10-fold slower hydrolytic rate for the phosphorothioate analogue than for the parent compound, a finding similar to previous work showing that a variety of nucleases and phosphodiesterases are less efficient in cleaving phosphorothioate DNA than the native polymer.
Subject(s)
Liver/enzymology , Phosphotransferases/metabolism , Transferases (Other Substituted Phosphate Groups) , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Sugars/metabolism , Animals , Chick Embryo , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Glucosephosphates/metabolism , Hydrolysis , Kinetics , Male , Molecular Weight , Phosphorus Radioisotopes , Rats , Rats, Inbred Strains , Sulfur Radioisotopes , Uridine Diphosphate Glucose/analogs & derivativesABSTRACT
The association of inheritance of different apolipoprotein E (APOE, gene; apoE, protein) alleles with the risk and rate of onset of Alzheimer's disease (AD) is now well established and widely confirmed. While there are now a collection of hypotheses concerning the specific relationship of APOE polymorphisms to various phenotypic manifestations of AD, no single compelling theory has been tested and universally accepted. The only clear fact emerging during the past 6 years is that differences in APOE genotype affect the average rate of disease onset as a predictable function of the inheritance of this polymorphic gene. Methods now exist to enable experimental designs to study the metabolic effects of inheriting different APOE alleles, addressing what differences that may be present for many years, perhaps over the entire lifetime, can lead to earlier or later manifestations of the disease and are therapeutically tractable. This review summarizes part of an experimental approach to identify biological pathways influenced by the different APOE polymorphisms that are relevant to the pathogenesis of AD.