Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
J Nutr ; 154(2): 765-776, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135004

ABSTRACT

BACKGROUND: Environmental enteric dysfunction (EED) is associated with stunting. Citrulline, produced in mature enterocytes, may be a valuable biomarker of small intestinal enterocyte mass in the context of EED. OBJECTIVES: We aimed to explore the correlates of plasma citrulline (p-cit) in children with stunting. METHODS: In a cross-sectional study using baseline data from the community-based MAGNUS (milk affecting growth, cognition and the gut in child stunting) trial (ISRCTN13093195), we explored potential correlates of p-cit in Ugandan children with stunting aged 12-59 mo. Using linear regression in univariate and multivariate models, we explored associations with socioeconomics, diet, micronutrient status, and water, sanitation, and hygiene characteristics. The influence of covariates age, fasting, and systemic inflammation were also explored. RESULTS: In 750 children, the mean ± standard deviation age was 32.0 ± 11.7 mo, and height-for-age z-score was -3.02 ± 0.74. P-cit, available for 730 children, differed according to time fasted and was 20.7 ± 8.9, 22.3 ± 10.6 and 24.2 ± 13.1 µmol/L if fasted <2, 2-5 and >5 h, respectively. Positive correlates of p-cit were age [0.07; 95% confidence interval (CI): 0.001, 0.15 µmol/L] and log10 serum insulin-like growth factor-1 (8.88; 95% CI: 5.09, 12.67 µmol/L). With adjustment for systemic inflammation, the association with serum insulin-like growth factor-1 reduced (4.98; 95% CI: 0.94, 9.03 µmol/L). Negative correlates of p-cit included food insecurity, wet season (-3.12; 95% CI: -4.97, -1.26 µmol/L), serum C-reactive protein (-0.15; 95% CI: -0.20, -0.10 µmol/L), serum α1-acid glycoprotein (-5.34; 95% CI: -6.98, -3.70 µmol/L) and anemia (-1.95; 95% CI: -3.72, -0.18 µmol/L). Among the negatively correlated water, sanitation, and hygiene characteristics was lack of soap for handwashing (-2.53; 95% CI: -4.82, -0.25 µmol/L). Many associations attenuated with adjustment for inflammation. CONCLUSIONS: Many of the correlates of p-cit are characteristic of populations with a high EED prevalence. Systemic inflammation is strongly associated with p-cit and is implicated in EED and stunting. Adjustment for systemic inflammation attenuates many associations, reflecting either confounding, mediation, or both. This study highlights the complex interplay between p-cit and systemic inflammation.


Subject(s)
Citrulline , Enterocytes , Child , Humans , Enterocytes/metabolism , Cross-Sectional Studies , Uganda , Growth Disorders/epidemiology , Inflammation/metabolism , Water
2.
J Biol Chem ; 296: 100500, 2021.
Article in English | MEDLINE | ID: mdl-33667545

ABSTRACT

The gut microbiota plays a central role in human health by enzymatically degrading dietary fiber and concomitantly excreting short chain fatty acids that are associated with manifold health benefits. The polysaccharide xylan is abundant in dietary fiber but noncarbohydrate decorations hinder efficient cleavage by glycoside hydrolases (GHs) and need to be addressed by carbohydrate esterases (CEs). Enzymes from carbohydrate esterase families 1 and 6 (CE1 and 6) perform key roles in xylan degradation by removing feruloyl and acetate decorations, yet little is known about these enzyme families especially with regard to their diversity in activity. Bacteroidetes bacteria are dominant members of the microbiota and often encode their carbohydrate-active enzymes in multigene polysaccharide utilization loci (PULs). Here we present the characterization of three CEs found in a PUL encoded by the gut Bacteroidete Dysgonomonas mossii. We demonstrate that the CEs are functionally distinct, with one highly efficient CE6 acetyl esterase and two CE1 enzymes with feruloyl esterase activities. One multidomain CE1 enzyme contains two CE1 domains: an N-terminal domain feruloyl esterase, and a C-terminal domain with minimal activity on model substrates. We present the structure of the C-terminal CE1 domain with the carbohydrate-binding module that bridges the two CE1 domains, as well as a complex of the same protein fragment with methyl ferulate. The investment of D. mossii in producing multiple CEs suggests that improved accessibility of xylan for GHs and cleavage of covalent polysaccharide-polysaccharide and lignin-polysaccharide bonds are important enzyme activities in the gut environment.


Subject(s)
Bacterial Proteins/metabolism , Bacteroidetes/enzymology , Esterases/metabolism , Gastrointestinal Microbiome , Polysaccharides/metabolism , Amino Acid Sequence , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Carbohydrate Metabolism , Humans , Models, Molecular , Sequence Alignment , Substrate Specificity
3.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555145

ABSTRACT

Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) and irritable bowel syndrome (IBS) contain distinct metabolite profiles and establish their effects on Caco-2 cells and human-derived colon organoids (colonoids). The metabolite profiles of fecal supernatants were analyzed by liquid chromatography-mass spectrometry and distinguished patients with CC (n = 6), UC (n = 6), IBS (n = 6) and healthy subjects (n = 6). Caco-2 monolayers and human apical-out colonoids underwent stimulation with fecal supernatants from different patient groups and healthy subjects. Their addition did not impair monolayer integrity, as measured by transepithelial electrical resistance; however, fecal supernatants from different patient groups and healthy subjects altered the gene expression of Caco-2 monolayers, as well as colonoid cultures. In conclusion, the stimulation of Caco-2 cells and colonoids with fecal supernatants derived from CC, UC and IBS patients altered gene expression profiles, potentially reflecting the luminal microenvironment of the fecal sample donor. This experimental approach allows for investigating the crosstalk at the gut barrier and the effects of the gut microenvironment in the pathogenesis of intestinal diseases.


Subject(s)
Colitis, Ulcerative , Colonic Neoplasms , Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/metabolism , Caco-2 Cells , Transcriptome , Colitis, Ulcerative/metabolism , Feces/chemistry , Colonic Neoplasms/metabolism , Intestinal Mucosa/metabolism , Tumor Microenvironment
4.
Molecules ; 27(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235182

ABSTRACT

Aloe barbadensis Mill. (Aloe) is used for diverse therapeutic properties including immunomodulation. However, owing to the compositionally complex nature of Aloe, bioactive component(s) responsible for its beneficial properties, though thought to be attributed to polysaccharides (acemannan), remain unknown. We therefore aimed to determine the metabolite composition of various commercial Aloe extracts and assess their effects on human blood T cell activity in vitro. Peripheral blood mononuclear cells (PBMC) from healthy donors were stimulated polyclonally in presence or absence of various Aloe extracts. T cell phenotype and proliferation were investigated by flow cytometry. Aloe extracts were analyzed using targeted 1H-NMR spectroscopy for standard phytochemical quality characterization and untargeted gas chromatography mass spectrometry (GC-MS) for metabolite profiling. Aloe extracts differing in their standard phytochemical composition had varying effects on T cell activation, proliferation, apoptosis, and cell-death in vitro, although this was not related to the acemannan content. Furthermore, each Aloe extract had its own distinct metabolite profile, where extracts rich in diverse sugar and sugar-derivatives were associated with reduced T cell activity. Our results demonstrate that all commercial Aloe extracts are unique with distinct metabolite profiles, which lead to differential effects on T cell activity in vitro, independent of the acemannan content.


Subject(s)
Aloe , Aloe/chemistry , Humans , Leukocytes, Mononuclear/metabolism , Plant Extracts/chemistry , Polysaccharides/metabolism , Sugars/metabolism , T-Lymphocytes/metabolism
5.
Gastroenterology ; 158(1): 151-159.e3, 2020 01.
Article in English | MEDLINE | ID: mdl-31560892

ABSTRACT

BACKGROUND & AIMS: Celiac disease can develop at any age, but outcomes of adults with positive results from serologic tests for tissue transglutaminase antibodies (tTGA) without endoscopic determination of celiac disease (called celiac autoimmunity) have not been thoroughly evaluated. We investigated the proportion of adults with celiac autoimmunity at a community medical center and their progression to celiac disease. METHODS: We analyzed waste blood samples from a community clinic from 15,551 adults for tTGA and, if titer results were above 2 U/mL, for endomysial antibody. The blood samples had been collected at 2 time points (median interval, 8.8 years) from 2006 through 2017. We collected data from the clinic on diagnoses of celiac disease based on duodenal biopsy analysis. RESULTS: Of the serum samples collected at the first time point, 15,398 had negative results for tTGA, and 153 had positive results for tTGA (>4 U/mL). Based on medical records, 6 individuals received a diagnosis of celiac disease, for a cumulative incidence of celiac disease diagnosis of 0.06% (95% confidence interval, 0.01-0.11). Forty-nine (0.32%) individuals with a negative result from the first serologic test for tTGA had a positive result from the second test. Among the 153 adults who were tTGA positive at the first time point, 31 (20%) had a subsequent diagnosis of celiac disease, 81 (53%) remained positive for tTGA without a clinical diagnosis of celiac disease, and 41 (27%) had negative test results for tTGA at the second time point. Higher initial tTGA titers, female sex, and a history of hypothyroidism and autoimmune disease were associated with increased risks of subsequent diagnosis of celiac disease. Interestingly, adults whose first blood sample had a positive test result but second blood sample had a negative result for tTGA were older, had lower-than-average initial tTGA titer results, and had a higher mean body mass index than adults whose blood samples were positive for tTGA at both time points and adults later diagnosed with celiac disease. CONCLUSIONS: In an analysis of serum samples collected from a community clinic an average of 8.8 years apart, we found that fewer than 1% of adults with negative results from an initial test for tTGA have a positive result on a second test. Of adults with positive results from the test for tTGA, only 20% are later diagnosed with celiac disease; the remaining individuals maintain persistent increases in tTGA without diagnoses of celiac disease or have negative results from second tests.


Subject(s)
Autoantibodies/blood , Autoimmunity , Celiac Disease/epidemiology , Community Health Centers/statistics & numerical data , GTP-Binding Proteins/immunology , Transglutaminases/immunology , Adult , Autoantibodies/immunology , Biopsy , Celiac Disease/diagnosis , Celiac Disease/immunology , Disease Progression , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Minnesota/epidemiology , Prospective Studies , Protein Glutamine gamma Glutamyltransferase 2 , Seroepidemiologic Studies
6.
J Proteome Res ; 15(1): 259-65, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26615962

ABSTRACT

For the first time it is possible to simultaneously collect targeted and nontargeted metabolomics data from plasma based on GC with high scan speed tandem mass spectrometry (GC-MS/MS). To address the challenge of getting broad metabolome coverage while quantifying known biomarker compounds in high-throughput GC-MS metabolomics, we developed a novel GC-MS/MS metabolomics method using a high scan speed (20 000 Da/second) GC-MS/MS that enables simultaneous data acquisition of both nontargeted full scan and targeted quantitative tandem mass spectrometry data. The combination of these two approaches has hitherto not been demonstrated in metabolomics. This method allows reproducible quantification of at least 37 metabolites using multiple reaction monitoring (MRM) and full mass spectral scan-based detection of 601 reproducible metabolic features from human plasma. The method showed good linearity over normal concentrations in plasma (0.06-343 to 0.86-4800 µM depending on the metabolite) and good intra- and interbatch precision (0.9-16.6 and 2.6-29.6% relative standard deviation). Based on the parameters determined for this method, targeted quantification using MRM can be expanded to cover at least 508 metabolites while still collecting full scan data. The new simultaneous targeted and nontargeted metabolomics method enables more sensitive and accurate detection of predetermined metabolites and biomarkers of interest, while still allowing detection and identification of unknown metabolites. This is the first validated GC-MS/MS metabolomics method with simultaneous full scan and MRM data collection, and clearly demonstrates the utility of GC-MS/MS with high scanning rates for complex analyses.


Subject(s)
Blood Chemical Analysis/methods , Biomarkers/blood , Blood Chemical Analysis/standards , Gas Chromatography-Mass Spectrometry , Humans , Limit of Detection , Metabolome , Metabolomics , Reference Standards , Tandem Mass Spectrometry
7.
Anal Biochem ; 499: 1-7, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26827992

ABSTRACT

Plasma alkylresorcinols are increasingly analyzed in cohort studies to improve estimates of whole grain intake and their relationship with disease incidence. Current methods require large volumes of solvent (>10 ml/sample) and have relatively low daily sample throughput. We tested five different supported extraction methods for extracting alkylresorcinols from plasma and improved a normal-phase liquid chromatography coupled to a tandem mass spectrometer method to reduce sample analysis time. The method was validated and compared with gas chromatography-mass spectrometry analysis. Sample preparation with HybridSPE supported extraction was most effective for alkylresorcinol extraction, with recoveries of 77-82% from 100 µl of plasma. The use of 96-well plates allowed extraction of 160 samples per day. Using a 5-cm NH2 column and heptane reduced run times to 3 min. The new method had a limit of detection and limit of quantification equivalent to 1.1-1.8 nmol/L and 3.5-6.1 nmol/L plasma, respectively, for the different alkylresorcinol homologues. Accuracy was 93-105%, and intra- and inter-batch precision values were 4-18% across different plasma concentrations. This method makes it possible to quantify plasma alkylresorcinols in 100 µl of plasma at a rate of at least 160 samples per day without the need for large volumes of organic solvents.


Subject(s)
Eating , High-Throughput Screening Assays , Resorcinols/blood , Secale/chemistry , Tandem Mass Spectrometry , Whole Grains/chemistry , Biomarkers/blood , Chromatography, High Pressure Liquid , Humans
8.
Eur J Epidemiol ; 31(8): 717-33, 2016 08.
Article in English | MEDLINE | ID: mdl-27230258

ABSTRACT

Data quality is critical for epidemiology, and as scientific understanding expands, the range of data available for epidemiological studies and the types of tools used for measurement have also expanded. It is essential for the epidemiologist to have a grasp of the issues involved with different measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses, focusing on metabolites and their application and potential issues related to large-scale epidemiology studies, the use of MS "omics" approaches for biomarker discovery and how MS-based results can be used for increasing biological knowledge gained from epidemiological studies. Better understanding of the possibilities and possible problems related to MS-based measurements will help the epidemiologist in their discussions with analytical chemists and lead to the use of the most appropriate statistical tools for these data.


Subject(s)
Epidemiologic Research Design , Mass Spectrometry/methods , Metabolomics/methods , Biomarkers/metabolism , Humans , Sensitivity and Specificity
9.
J Nutr ; 144(7): 1016-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24812068

ABSTRACT

The bioavailability of whole-grain rye-derived phytochemicals has not yet been comprehensively characterized, and different baking and manufacturing processes can modulate the phytochemical composition of breads and other rye products. The aim of our study was to find key differences in the phytochemical profile of plasma after the consumption of 3 breads containing rye bran when compared with a plain white wheat bread control. Plasma metabolite profiles of 12 healthy middle-aged men and women were analyzed using LC quadrupole time-of-flight mass spectrometry metabolomics analysis while fasting and at 60 min, 120 min, 240 min, and 24 h after consuming a meal that contained either 100% whole-grain sourdough rye bread or white wheat bread enriched with native unprocessed rye bran or bioprocessed rye bran. White wheat bread was used as the control. The meals were served in random order after a 12-h overnight fast, with at least 3 d between each occasion. Two sulfonated phenylacetamides, hydroxy-N-(2-hydroxyphenyl) acetamide and N-(2-hydroxyphenyl) acetamide, potentially derived from the benzoxazinoid metabolites, were among the most discriminant postprandial plasma biomarkers distinguishing intake of breads containing whole-meal rye or rye bran from the control white wheat bread. Furthermore, subsequent metabolite profiling analysis of the consumed breads indicated that different bioprocessing/baking techniques involving exposure to microbial metabolism (e.g., sourdough fermentation) have a central role in modulating the phytochemical content of the whole-grain and bran-rich breads.


Subject(s)
Acetanilides/blood , Benzoxazines/metabolism , Bread , Dietary Fiber/metabolism , Flour , Secale/chemistry , Seeds/chemistry , Acetanilides/metabolism , Aged , Bread/microbiology , Dietary Fiber/analysis , Female , Fermentation , Finland , Food Handling , Food, Fortified/microbiology , Humans , Hydroxylation , Lactobacillus/metabolism , Male , Middle Aged , Postprandial Period , Saccharomyces cerevisiae/metabolism , Sulfates/blood , Sulfates/metabolism , Sulfonic Acids/blood , Sulfonic Acids/metabolism
10.
Neurogastroenterol Motil ; 36(3): e14741, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243381

ABSTRACT

BACKGROUND: The potential of the fecal metabolome to serve as a biomarker for irritable bowel syndrome (IBS) depends on its stability over time. Therefore, this study aimed to determine the temporal dynamics of the fecal metabolome, and the potential relationship with stool consistency, in patients with IBS and healthy subjects. METHODS: Fecal samples were collected in two cohorts comprising patients with IBS and healthy subjects. For Cohort A, fecal samples collected during 5 consecutive days were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). For Cohort B, liquid chromatography-MS (LC-MS) was used to analyze fecal samples collected at week 0 (healthy and IBS) and at week 4 (patients only). Stool consistency was determined by the Bristol Stool Form scale. KEY RESULTS: Fecal samples were collected from Cohort A (seven healthy subjects and eight IBS patients), and Cohort B (seven healthy subjects and 11 IBS patients). The fecal metabolome of IBS patients was stable short-term (Cohort A, 5 days and within the same day) and long-term (Cohort B, 4 weeks). A similar trend was observed over 5 days in the healthy subjects of Cohort A. The metabolome dissimilarity was larger between than within participants over time in both healthy subjects and IBS patients. Further analyses showed that patients had greater range of stool forms (types) than healthy subjects, with no apparent influence on metabolomic dynamics. CONCLUSION & INFERENCES: The fecal metabolome is stable over time within IBS patients as well as healthy subjects. This supports the concept of a stable fecal metabolome in IBS despite fluctuations in stool consistency, and the use of single timepoint sampling to further explore how the fecal metabolome is related to IBS pathogenesis.


Subject(s)
Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/etiology , Tandem Mass Spectrometry , Feces/chemistry , Metabolomics/methods , Metabolome
11.
J Am Soc Mass Spectrom ; 35(3): 542-550, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38310603

ABSTRACT

Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io.


Subject(s)
Metabolomics , Software , Humans , Reproducibility of Results , Mass Spectrometry , Automation
12.
Methods Mol Biol ; 2571: 115-122, 2023.
Article in English | MEDLINE | ID: mdl-36152155

ABSTRACT

The circulating metabolome of human peripheral blood provides valuable information to investigate the molecular mechanisms underlying the development of diseases and to discover candidate biomarkers. In particular, erythrocytes have been proposed as potential systemic indicators of the metabolic and redox status of the organism. To accomplish wide-coverage metabolomics analysis, the combination of complementary analytical techniques is necessary to manage the physicochemical complexity of the human metabolome. Herein, we describe an untargeted metabolomics method to capture the plasmatic and erythroid metabolomes based on ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry, combining reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. The method provides comprehensive metabolomics fingerprinting of plasma and erythrocyte samples, thereby enabling the elucidation of the distinctive metabolic disturbances behind childhood obesity and associated comorbidities, such as insulin resistance.


Subject(s)
Pediatric Obesity , Biomarkers/metabolism , Child , Chromatography, Liquid/methods , Erythrocytes/metabolism , Humans , Mass Spectrometry , Metabolome , Metabolomics/methods
13.
Clin Nutr ; 42(7): 1126-1141, 2023 07.
Article in English | MEDLINE | ID: mdl-37268538

ABSTRACT

BACKGROUND & AIMS: Diet and weight loss affect circulating metabolome. However, metabolite profiles induced by different weight loss maintenance diets and underlying longer term weight loss maintenance remain unknown. Herein, we investigated after-weight-loss metabolic signatures of two isocaloric 24-wk weight maintenance diets differing in satiety value due to dietary fibre, protein and fat contents and identified metabolite features that associated with successful weight loss maintenance. METHODS: Non-targeted LC-MS metabolomics approach was used to analyse plasma metabolites of 79 women and men (mean age ± SD 49.7 ± 9.0 years; BMI 34.2 ± 2.5 kg/m2) participating in a weight management study. Participants underwent a 7-week very-low-energy diet (VLED) and were thereafter randomised into two groups for a 24-week weight maintenance phase. Higher satiety food (HSF) group consumed high-fibre, high-protein, and low-fat products, while lower satiety food (LSF) group consumed isocaloric low-fibre products with average protein and fat content as a part of their weight maintenance diets. Plasma metabolites were analysed before the VLED and before and after the weight maintenance phase. Metabolite features discriminating HSF and LSF groups were annotated. We also analysed metabolite features that discriminated participants who maintained ≥10% weight loss (HWM) and participants who maintained <10% weight loss (LWM) at the end of the study, irrespective of the diet. Finally, we assessed robust linear regression between metabolite features and anthropometric and food group variables. RESULTS: We annotated 126 metabolites that discriminated the HSF and LSF groups and HWM and LWM groups (p < 0.05). Compared to LSF, the HSF group had lower levels of several amino acids, e.g. glutamine, arginine, and glycine, short-, medium- and long-chain acylcarnitines (CARs), odd- and even-chain lysoglycerophospholipids, and higher levels of fatty amides. Compared to LWM, the HWM group in general showed higher levels of glycerophospholipids with a saturated long-chain and a C20:4 fatty acid tail, and unsaturated free fatty acids (FFAs). Changes in several saturated odd- and even-chain LPCs and LPEs and fatty amides were associated with the intake of many food groups, particularly grain and dairy products. Increase in several (lyso)glycerophospholipids was associated with decrease in body weight and adiposity. Increased short- and medium-chain CARs were related to decreased body fat-free mass. CONCLUSIONS: Our results show that isocaloric weight maintenance diets differing in dietary fibre, protein, and fat content affected amino acid and lipid metabolism. Increased abundances of several phospholipid species and FFAs were related with greater weight loss maintenance. Our findings indicate common and distinct metabolites for weight and dietary related variables in the context of weight reduction and weight management. The study was registered in isrctn.org with identifier 67529475.


Subject(s)
Diet , Dietary Fats , Male , Humans , Female , Dietary Fats/pharmacology , Diet, Reducing , Dietary Fiber , Metabolome , Weight Loss
14.
NPJ Syst Biol Appl ; 9(1): 11, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029131

ABSTRACT

Saccharomyces cerevisiae is a very well studied organism, yet ∼20% of its proteins remain poorly characterized. Moreover, recent studies seem to indicate that the pace of functional discovery is slow. Previous work has implied that the most probable path forward is via not only automation but fully autonomous systems in which active learning is applied to guide high-throughput experimentation. Development of tools and methods for these types of systems is of paramount importance. In this study we use constrained dynamical flux balance analysis (dFBA) to select ten regulatory deletant strains that are likely to have previously unexplored connections to the diauxic shift. We then analyzed these deletant strains using untargeted metabolomics, generating profiles which were then subsequently investigated to better understand the consequences of the gene deletions in the metabolic reconfiguration of the diauxic shift. We show that metabolic profiles can be utilised to not only gaining insight into cellular transformations such as the diauxic shift, but also on regulatory roles and biological consequences of regulatory gene deletion. We also conclude that untargeted metabolomics is a useful tool for guidance in high-throughput model improvement, and is a fast, sensitive and informative approach appropriate for future large-scale functional analyses of genes. Moreover, it is well-suited for automated approaches due to relative simplicity of processing and the potential to make massively high-throughput.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Metabolomics/methods
15.
Cells ; 13(1)2023 12 27.
Article in English | MEDLINE | ID: mdl-38201264

ABSTRACT

Intestinal macrophages and fibroblasts act as microenvironmental sentinels mediating inflammation and disease progression in Crohn's disease (CD). We aimed to establish the effects of fecal supernatants (FSs) from patients with CD on macrophage and fibroblast phenotype and function. FS were obtained by ultracentrifugation, and the metabolites were analyzed. Monocyte-derived M2 macrophages and fibroblasts were conditioned with FS, and secreted proteins, surface proteins and gene expression were analyzed. M2 macrophage efferocytosis was evaluated. Patients with CD (n = 15) had a skewed fecal metabolite profile compared to healthy subjects (HS, n = 10). FS from CD patients (CD-FS) induced an anti-inflammatory response in M2 macrophages with higher expression of IL-10, IL1RA and CD206 as compared to healthy FS (HS-FS) while the efferocytotic capacity was unaltered. CD-FS did not affect extracellular matrix production from fibroblasts, but increased expression of the pro-inflammatory proteins IL-6 and MCP-1. Conditioned media from M2 macrophages treated with CD-FS modulated gene expression in fibroblasts for TGFß superfamily members and reduced IL-4 expression compared to HS-FS. We show that M2 macrophages and fibroblasts react abnormally to the fecal microenvironment of CD patients, resulting in altered protein expression related to inflammation but not fibrosis. This implies that the gut microbiota and its metabolites have an important role in the generation and/or perpetuation of inflammation in CD.


Subject(s)
Crohn Disease , Humans , Inflammation , Culture Media, Conditioned/pharmacology , Disease Progression , Fibroblasts
16.
Nutr Rev ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37791499

ABSTRACT

The aim of this literature review was to identify and provide a summary update on the validity and applicability of the most promising dietary biomarkers reflecting the intake of important foods in the Western diet for application in epidemiological studies. Many dietary biomarker candidates, reflecting intake of common foods and their specific constituents, have been discovered from intervention and observational studies in humans, but few have been validated. The literature search was targeted for biomarker candidates previously reported to reflect intakes of specific food groups or components that are of major importance in health and disease. Their validity was evaluated according to 8 predefined validation criteria and adapted to epidemiological studies; we summarized the findings and listed the most promising food intake biomarkers based on the evaluation. Biomarker candidates for alcohol, cereals, coffee, dairy, fats and oils, fruits, legumes, meat, seafood, sugar, tea, and vegetables were identified. Top candidates for all categories are specific to certain foods, have defined parent compounds, and their concentrations are unaffected by nonfood determinants. The correlations of candidate dietary biomarkers with habitual food intake were moderate to strong and their reproducibility over time ranged from low to high. For many biomarker candidates, critical information regarding dose response, correlation with habitual food intake, and reproducibility over time is yet unknown. The nutritional epidemiology field will benefit from the development of novel methods to combine single biomarkers to generate biomarker panels in combination with self-reported data. The most promising dietary biomarker candidates that reflect commonly consumed foods and food components for application in epidemiological studies were identified, and research required for their full validation was summarized.

17.
J Matern Fetal Neonatal Med ; 35(11): 2054-2062, 2022 Jun.
Article in English | MEDLINE | ID: mdl-32543931

ABSTRACT

INTRODUCTION: Spontaneous preterm delivery (<37 gestational weeks) has a multifactorial etiology with still incompletely identified pathways. Amniotic fluid is a biofluid with great potential for insights into the feto-maternal milieu. It is rich in metabolites, and metabolic consequences of inflammation is yet researched only to a limited extent. Metabolomic profiling provides opportunities to identify potential biomarkers of inflammatory conditioned pregnancy complications such as spontaneous preterm delivery. OBJECTIVE: The aim of this study was to perform metabolomic profiling of amniotic fluid from uncomplicated singleton pregnancies in the mid-trimester to identify potential biomarkers associated with spontaneous preterm delivery and gestational duration at delivery. A secondary aim was to replicate previously reported mid-trimester amniotic fluid metabolic biomarkers of spontaneous preterm delivery in asymptomatic women. METHOD: A nested case-control study was performed within a larger cohort study of asymptomatic pregnant women undergoing mid-trimester genetic amniocentesis at 14-19 gestational weeks in Gothenburg, Sweden. Medical records were used to obtain clinical data and delivery outcome variables. Amniotic fluid samples from women with a subsequent spontaneous preterm delivery (n = 37) were matched with amniotic fluid samples from women with a subsequent spontaneous delivery at term (n = 37). Amniotic fluid samples underwent untargeted metabolomic analyses using liquid chromatography-mass spectrometry. Multivariate random forest analyses were used for data processing. A secondary targeted analysis was performed, aiming to replicate previously reported mid-trimester amniotic fluid metabolic biomarkers in women with a subsequent spontaneous preterm delivery. RESULTS: Multivariate analysis did not distinguish the samples from women with a subsequent spontaneous preterm delivery from those with a subsequent term delivery. Neither was the metabolic profile associated with gestational duration at delivery. Potential metabolic biomarker candidates were identified from four publications by two different research groups relating mid-trimester amniotic fluid metabolomes to spontaneous PTD, of which fifteen markers were included in the secondary analysis. None of these were replicated. CONCLUSIONS: Metabolomic profiles of early mid-trimester amniotic fluid were not associated with spontaneous preterm delivery or gestational duration at delivery in this cohort.


Subject(s)
Amniotic Fluid , Premature Birth , Amniocentesis , Amniotic Fluid/metabolism , Biomarkers/metabolism , Case-Control Studies , Cohort Studies , Female , Gestational Age , Humans , Infant, Newborn , Pregnancy , Pregnancy Trimester, Second , Premature Birth/diagnosis , Premature Birth/metabolism
18.
Neurogastroenterol Motil ; 34(10): e14390, 2022 10.
Article in English | MEDLINE | ID: mdl-35485994

ABSTRACT

BACKGROUND: Alteration of the host-microbiota cross talk at the intestinal barrier may participate in the pathophysiology of irritable bowel syndrome (IBS). Therefore, we aimed to determine effects of fecal luminal factors from IBS patients on the colonic epithelium using colonoids. METHODS: Colon-derived organoid monolayers, colonoids, generated from a healthy subject, underwent stimulation with fecal supernatants from healthy subjects and IBS patients with predominant diarrhea, phosphate-buffered saline (PBS), or lipopolysaccharide (LPS). Cytokines in cell cultures and fecal LPS were measured by ELISA and mRNA gene expression of monolayers was analyzed using Qiagen RT2 Profiler PCR Arrays. The fecal microbiota profile was determined by the GA-map™ dysbiosis test and the fecal metabolite profile was analyzed by untargeted liquid chromatography/mass spectrometry. KEY RESULTS: Colonoid monolayers stimulated with fecal supernatants from healthy subjects (n = 7), PBS (n = 4) or LPS (n = 3) presented distinct gene expression profiles, with some overlap (R2 Y = 0.70, Q2  = 0.43). Addition of fecal supernatants from healthy subjects and IBS patients (n = 9) gave rise to different gene expression profiles of the colonoid monolayers (R2 Y = 0.79, Q2  = 0.64). Genes (n = 22) related to immune response (CD1D, TLR5) and barrier integrity (CLDN15, DSC2) contributed to the separation. Levels of proinflammatory cytokines in colonoid monolayer cultures were comparable when stimulated with fecal supernatants from either donor types. Fecal microbiota and metabolite profiles, but not LPS content, differed between the study groups. CONCLUSIONS: Fecal luminal factors from IBS patients induce a distinct colonic epithelial gene expression, potentially reflecting the disease pathophysiology. The culture of colonoids from healthy subjects with fecal supernatants from IBS patients may facilitate the exploration of IBS related intestinal micro-environmental and barrier interactions.


Subject(s)
Irritable Bowel Syndrome , Cytokines/analysis , Diarrhea , Feces/chemistry , Gene Expression , Humans , Irritable Bowel Syndrome/metabolism , Lipopolysaccharides/pharmacology , Phosphates/analysis , RNA, Messenger , Toll-Like Receptor 5/analysis
19.
Metabolites ; 12(2)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35208249

ABSTRACT

Umbilical cord blood is frequently used in health monitoring of the neonate. Results may be affected by the proportion of arterial and venous cord blood, the venous blood coming from the mother to supply oxygen and nutrients to the infant, and the arterial carrying waste products from the fetus. Here, we sampled arterial and venous umbilical cords separately from 48 newly delivered infants and examined plasma metabolomes using GC-MS/MS metabolomics. We investigated differences in metabolomes between arterial and venous blood and their associations with gestational length, birth weight, sex, and whether the baby was the first born or not, as well as maternal age and BMI. Using multilevel random forest analysis, a classification rate of 79% was achieved for arteriovenous differences (p = 0.004). Several monosaccharides had higher concentrations in the arterial cord plasma while amino acids were higher in venous plasma, suggesting that the main differences in the measured arterial and venous plasma metabolomes are related to amino acid and energy metabolism. Venous cord plasma metabolites related to energy metabolism were positively associated with parity (77% classification rate, p = 0.004) while arterial cord plasma metabolites were not. This underlines the importance of defining cord blood type for metabolomic studies.

20.
Mol Nutr Food Res ; 66(21): e2101096, 2022 11.
Article in English | MEDLINE | ID: mdl-35960594

ABSTRACT

SCOPE: Fermentation improves many food characteristics using microbes, such as lactic acid bacteria (LAB). Recent studies suggest fermentation may also enhance the health properties, but mechanistic evidence is lacking. The study aims to identify a metabolite pattern reproducibly produced during sourdough and in vitro colonic fermentation of various whole-grain rye products and how it affects the growth of bacterial species of potential importance to health and disease. METHODS AND RESULTS: The study uses Lactiplantibacillus plantarum DSMZ 13890 strain, previously shown to favor rye as its substrate. Using LC-MS metabolomics, the study finds seven microbial metabolites commonly produced during the fermentations, including dihydroferulic acid, dihydrocaffeic acid, and five amino acid metabolites, and stronger inhibition is achieved when exposing the bacteria to a mixture of the metabolites in vitro compared to individual compound exposures. CONCLUSION: The study suggests that metabolites produced by LAB may synergistically modulate the local microbial ecology, such as in the gut. This could provide new hypotheses on how fermented foods influence human health via diet-microbiota interactions.


Subject(s)
Fermented Foods , Lactobacillales , Humans , Secale/chemistry , Bread/analysis , Bread/microbiology , Fermentation , Triticum/chemistry , Lactobacillaceae , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL