Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Opt Express ; 32(2): 2490-2506, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297777

ABSTRACT

Spectral remote sensing reflectance, Rrs(λ) (sr-1), is the fundamental quantity used to derive a host of bio-optical and biogeochemical properties of the water column from satellite ocean color measurements. Estimation of uncertainty in those derived geophysical products is therefore dependent on knowledge of the uncertainty in satellite-retrieved Rrs. Furthermore, since the associated algorithms require Rrs at multiple spectral bands, the spectral (i.e., band-to-band) error covariance in Rrs is needed to accurately estimate the uncertainty in those derived properties. This study establishes a derivative-based approach for propagating instrument random noise, instrument systematic uncertainty, and forward model uncertainty into Rrs, as retrieved using NASA's multiple-scattering epsilon (MSEPS) atmospheric correction algorithm, to generate pixel-level error covariance in Rrs. The approach is applied to measurements from Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite and verified using Monte Carlo (MC) analysis. We also make use of this full spectral error covariance in Rrs to calculate uncertainty in phytoplankton pigment chlorophyll-a concentration (chla, mg/m3) and diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd(490), m-1). Accounting for the error covariance in Rrs generally reduces the estimated relative uncertainty in chla by ∼1-2% (absolute value) in waters with chla < 0.25 mg/m3 where the color index (CI) algorithm is used. The reduction is ∼5-10% in waters with chla > 0.35 mg/m3 where the blue-green ratio (OCX) algorithm is used. Such reduction can be higher than 30% in some regions. For Kd(490), the reduction by error covariance is generally ∼2%, but can be higher than 20% in some regions. The error covariance in Rrs is further verified through forward-calculating chla from MODIS-retrieved and in situ Rrs and comparing estimated uncertainty with observed differences. An 8-day global composite of propagated uncertainty shows that the goal of 35% uncertainty in chla can be achieved over deep ocean waters (chla ≤ 0.1 mg/m3). While the derivative-based approach generates reasonable error covariance in Rrs, some assumptions should be updated as our knowledge improves. These include the inter-band error correlation in top-of-atmosphere reflectance, and uncertainties in the calibration of MODIS 869 nm band, in ancillary data, and in the in situ data used for system vicarious calibration.

2.
Opt Express ; 30(17): 31415-31438, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242224

ABSTRACT

The spectral distribution of marine remote sensing reflectance, Rrs, is the fundamental measurement of ocean color science, from which a host of bio-optical and biogeochemical properties of the water column can be derived. Estimation of uncertainty in these derived properties is thus dependent on knowledge of the uncertainty in satellite-retrieved Rrs (uc(Rrs)) at each pixel. Uncertainty in Rrs, in turn, is dependent on the propagation of various uncertainty sources through the Rrs retrieval process, namely the atmospheric correction (AC). A derivative-based method for uncertainty propagation is established here to calculate the pixel-level uncertainty in Rrs, as retrieved using NASA's multiple-scattering epsilon (MSEPS) AC algorithm and verified using Monte Carlo (MC) analysis. The approach is then applied to measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, with uncertainty sources including instrument random noise, instrument systematic uncertainty, and forward model uncertainty. The uc(Rrs) is verified by comparison with statistical analysis of coincident retrievals from MODIS and in situ Rrs measurements, and our approach performs well in most cases. Based on analysis of an example 8-day global products, we also show that relative uncertainty in Rrs at blue bands has a similar spatial pattern to the derived concentration of the phytoplankton pigment chlorophyll-a (chl-a), and around 7.3%, 17.0%, and 35.2% of all clear water pixels (chl-a ≤ 0.1 mg/m3) with valid uc(Rrs) have a relative uncertainty ≤ 5% at bands 412 nm, 443 nm, and 488 nm respectively, which is a common goal of ocean color retrievals for clear waters. While the analysis shows that uc(Rrs) calculated from our derivative-based method is reasonable, some issues need further investigation, including improved knowledge of forward model uncertainty and systematic uncertainty in instrument calibration.

3.
Appl Opt ; 61(22): 6453-6475, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36255869

ABSTRACT

Ocean color (OC) remote sensing requires compensation for atmospheric scattering and absorption (aerosol, Rayleigh, and trace gases), referred to as atmospheric correction (AC). AC allows inference of parameters such as spectrally resolved remote sensing reflectance (Rrs(λ);sr-1) at the ocean surface from the top-of-atmosphere reflectance. Often the uncertainty of this process is not fully explored. Bayesian inference techniques provide a simultaneous AC and uncertainty assessment via a full posterior distribution of the relevant variables, given the prior distribution of those variables and the radiative transfer (RT) likelihood function. Given uncertainties in the algorithm inputs, the Bayesian framework enables better constraints on the AC process by using the complete spectral information compared to traditional approaches that use only a subset of bands for AC. This paper investigates a Bayesian inference research method (optimal estimation [OE]) for OC AC by simultaneously retrieving atmospheric and ocean properties using all visible and near-infrared spectral bands. The OE algorithm analytically approximates the posterior distribution of parameters based on normality assumptions and provides a potentially viable operational algorithm with a reduced computational expense. We developed a neural network RT forward model look-up table-based emulator to increase algorithm efficiency further and thus speed up the likelihood computations. We then applied the OE algorithm to synthetic data and observations from the moderate resolution imaging spectroradiometer (MODIS) on NASA's Aqua spacecraft. We compared the Rrs(λ) retrieval and its uncertainty estimates from the OE method with in-situ validation data from the SeaWiFS bio-optical archive and storage system (SeaBASS) and aerosol robotic network for ocean color (AERONET-OC) datasets. The OE algorithm improved Rrs(λ) estimates relative to the NASA standard operational algorithm by improving all statistical metrics at 443, 555, and 667 nm. Unphysical negative Rrs(λ), which often appears in complex water conditions, was reduced by a factor of 3. The OE-derived pixel-level Rrs(λ) uncertainty estimates were also assessed relative to in-situ data and were shown to have skill.

4.
Environ Sci Technol ; 55(22): 15287-15300, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34724610

ABSTRACT

Annual global satellite-based estimates of fine particulate matter (PM2.5) are widely relied upon for air-quality assessment. Here, we develop and apply a methodology for monthly estimates and uncertainties during the period 1998-2019, which combines satellite retrievals of aerosol optical depth, chemical transport modeling, and ground-based measurements to allow for the characterization of seasonal and episodic exposure, as well as aid air-quality management. Many densely populated regions have their highest PM2.5 concentrations in winter, exceeding summertime concentrations by factors of 1.5-3.0 over Eastern Europe, Western Europe, South Asia, and East Asia. In South Asia, in January, regional population-weighted monthly mean PM2.5 concentrations exceed 90 µg/m3, with local concentrations of approximately 200 µg/m3 for parts of the Indo-Gangetic Plain. In East Asia, monthly mean PM2.5 concentrations have decreased over the period 2010-2019 by 1.6-2.6 µg/m3/year, with decreases beginning 2-3 years earlier in summer than in winter. We find evidence that global-monitored locations tend to be in cleaner regions than global mean PM2.5 exposure, with large measurement gaps in the Global South. Uncertainty estimates exhibit regional consistency with observed differences between ground-based and satellite-derived PM2.5. The evaluation of uncertainty for agglomerated values indicates that hybrid PM2.5 estimates provide precise regional-scale representation, with residual uncertainty inversely proportional to the sample size.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Particulate Matter/analysis , Uncertainty
5.
Environ Sci Technol ; 54(13): 7879-7890, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32491847

ABSTRACT

Exposure to outdoor fine particulate matter (PM2.5) is a leading risk factor for mortality. We develop global estimates of annual PM2.5 concentrations and trends for 1998-2018 using advances in satellite observations, chemical transport modeling, and ground-based monitoring. Aerosol optical depths (AODs) from advanced satellite products including finer resolution, increased global coverage, and improved long-term stability are combined and related to surface PM2.5 concentrations using geophysical relationships between surface PM2.5 and AOD simulated by the GEOS-Chem chemical transport model with updated algorithms. The resultant annual mean geophysical PM2.5 estimates are highly consistent with globally distributed ground monitors (R2 = 0.81; slope = 0.90). Geographically weighted regression is applied to the geophysical PM2.5 estimates to predict and account for the residual bias with PM2.5 monitors, yielding even higher cross validated agreement (R2 = 0.90-0.92; slope = 0.90-0.97) with ground monitors and improved agreement compared to all earlier global estimates. The consistent long-term satellite AOD and simulation enable trend assessment over a 21 year period, identifying significant trends for eastern North America (-0.28 ± 0.03 µg/m3/yr), Europe (-0.15 ± 0.03 µg/m3/yr), India (1.13 ± 0.15 µg/m3/yr), and globally (0.04 ± 0.02 µg/m3/yr). The positive trend (2.44 ± 0.44 µg/m3/yr) for India over 2005-2013 and the negative trend (-3.37 ± 0.38 µg/m3/yr) for China over 2011-2018 are remarkable, with implications for the health of billions of people.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring , Europe , Humans , India , Particulate Matter/analysis
7.
Environ Sci Technol ; 50(7): 3762-72, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26953851

ABSTRACT

We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM2.5 estimates were highly consistent (R(2) = 0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5 concentrations were 3-fold higher than the 10 µg/m(3) WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global scale.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Particulate Matter/analysis , Aerosols/analysis , Algorithms , Dust , Environmental Monitoring/instrumentation , Environmental Monitoring/statistics & numerical data , Geological Phenomena , Models, Statistical , Satellite Communications
8.
Commun Earth Environ ; 5(1): 247, 2024.
Article in English | MEDLINE | ID: mdl-38736528

ABSTRACT

We report on observed trend anomalies in climate-relevant global ocean biogeochemical properties, as derived from satellite ocean color measurements, that show a substantial decline in phytoplankton carbon concentrations following eruptions of the submarine volcano Hunga Tonga-Hunga Ha'apai in January 2022. The anomalies are seen in remotely-sensed ocean color data sets from multiple satellite missions, but not in situ observations, thus suggesting that the observed anomalies are a result of ocean color retrieval errors rather than indicators of a major shift in phytoplankton carbon concentrations. The enhanced concentration of aerosols in the stratosphere following the eruptions results in a violation of some fundamental assumptions in the processing algorithms used to obtain marine biogeochemical properties from satellite radiometric observations, and it is demonstrated through radiative transfer simulations that this is the likely cause of the anomalous trends. We note that any future stratospheric aerosol disturbances, either natural or geoengineered, may lead to similar artifacts in satellite ocean color and other remote-sensing measurements of the marine environment, thus confounding our ability to track the impact of such events on ocean ecosystems.

9.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: mdl-34162552

ABSTRACT

Lockdowns during the COVID-19 pandemic provide an unprecedented opportunity to examine the effects of human activity on air quality. The effects on fine particulate matter (PM2.5) are of particular interest, as PM2.5 is the leading environmental risk factor for mortality globally. We map global PM2.5 concentrations for January to April 2020 with a focus on China, Europe, and North America using a combination of satellite data, simulation, and ground-based observations. We examine PM2.5 concentrations during lockdown periods in 2020 compared to the same periods in 2018 to 2019. We find changes in population-weighted mean PM2.5 concentrations during the lockdowns of -11 to -15 µg/m3 across China, +1 to -2 µg/m3 across Europe, and 0 to -2 µg/m3 across North America. We explain these changes through a combination of meteorology and emission reductions, mostly due to transportation. This work demonstrates regional differences in the sensitivity of PM2.5 to emission sources.

10.
J Geophys Res Atmos ; 122(19): 10384-10401, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29963346

ABSTRACT

Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA 'Deep Blue' aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models with the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical models representative for Capo Verde site are used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at three island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; i.e., AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.

11.
Environ Health Perspect ; 124(2): 184-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26220256

ABSTRACT

BACKGROUND: Three decades of rapid economic development is causing severe and widespread PM2.5 (particulate matter ≤ 2.5 µm) pollution in China. However, research on the health impacts of PM2.5 exposure has been hindered by limited historical PM2.5 concentration data. OBJECTIVES: We estimated ambient PM2.5 concentrations from 2004 to 2013 in China at 0.1° resolution using the most recent satellite data and evaluated model performance with available ground observations. METHODS: We developed a two-stage spatial statistical model using the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) and assimilated meteorology, land use data, and PM2.5 concentrations from China's recently established ground monitoring network. An inverse variance weighting (IVW) approach was developed to combine MODIS Dark Target and Deep Blue AOD to optimize data coverage. We evaluated model-predicted PM2.5 concentrations from 2004 to early 2014 using ground observations. RESULTS: The overall model cross-validation R(2) and relative prediction error were 0.79 and 35.6%, respectively. Validation beyond the model year (2013) indicated that it accurately predicted PM2.5 concentrations with little bias at the monthly (R(2) = 0.73, regression slope = 0.91) and seasonal (R(2) = 0.79, regression slope = 0.92) levels. Seasonal variations revealed that winter was the most polluted season and that summer was the cleanest season. Analysis of predicted PM2.5 levels showed a mean annual increase of 1.97 µg/m(3) between 2004 and 2007 and a decrease of 0.46 µg/m(3) between 2008 and 2013. CONCLUSIONS: Our satellite-driven model can provide reliable historical PM2.5 estimates in China at a resolution comparable to those used in epidemiologic studies on the health effects of long-term PM2.5 exposure in North America. This data source can potentially advance research on PM2.5 health effects in China.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Particulate Matter/analysis , Spacecraft , China , Models, Statistical , Particle Size , Satellite Imagery , Seasons
12.
Aerosol Air Qual Res ; 16(11): 2831-2842, 2016 Nov.
Article in English | MEDLINE | ID: mdl-32908468

ABSTRACT

This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against spaceborne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74% (81-84%) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.8-1.0 km). Eliminating the requirement for CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64% of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

13.
Environ Pollut ; 195: 292-307, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25085565

ABSTRACT

The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Fires/statistics & numerical data , Smoke/analysis , Asia, Southeastern , Biomass , Climate
14.
Org Biomol Chem ; 4(9): 1760-7, 2006 May 07.
Article in English | MEDLINE | ID: mdl-16633569

ABSTRACT

The X-ray structure of the ClC chloride channel made it clear that O-H...chloride interactions play a key role in important biological membrane-bound systems, however, surprisingly this type of interaction has only been rarely exploited for the development of synthetic anion receptors. This paper therefore reports the anion binding strengths and selectivities of some simple commercially available bis-phenols. In particular, we compare catechol (1,2-dihydroxybenzene) and resorcinol (1,3-dihydroxybenzene) which show interesting and different selectivities between the halide anions in acetonitrile solution. Catechol binds tetrabutylammononium (TBA) chloride almost 30 times more strongly than TBA bromide, whilst for resorcinol, this difference drops to a factor of ca. 3.5. It is suggested that this is a consequence of the bite angle of the chelating hydrogen bonding groups of catechol being particularly appropriate for effective binding of the smaller anion. The oxidation of catechol to ortho-quinone is perturbed by the addition of chloride anions, as probed via cyclic voltammetry, and this compound can therefore be considered to act as an electrochemical sensor for chloride. Nitrocatechol is able to bind chloride anions more strongly than catechol as a consequence of its enhanced acidity and hence greater hydrogen bond donor character. Furthermore, nitrocatechol senses the bound anion via changes in its UV-visible spectrum. Notably, binding still occurs even in the presence of small amounts of competitive solvents (e.g. water). This observation has biomimetic importance as wet acetonitrile has some similarity in terms of overall polarity and hydrogen bond competition to the solvent shielded interiors of biological macromolecules and membranes--such as the environment within the ClC chloride channel itself. Finally, we report that catechol undergoes a unique colorimetric response on the addition of basic anions, such as fluoride. We can assign this response as being due to oxidative degradation of catechol catalysed by the basic anions (which bind to, and deprotonate, the catechol). This process is somewhat analogous to the well-known metal catalysed oxidation of catechol which can take place in aqueous solution. The speed of response and easily monitored and distinctive colour change induced by fluoride anions indicates this may be a useful mechanism for exploitation in the development of selective fluoride sensors.

SELECTION OF CITATIONS
SEARCH DETAIL