Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Immunity ; 48(5): 851-854, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768173

ABSTRACT

Biomedical interventions to curb malaria-causing Plasmodium falciparum (Pf) infections are critically needed. Two studies in Nature Medicine,Kisalu et al. (2018) and Tan et al. (2018), report the isolation of potent human antibodies that target a new epitope on Pf sporozoites and mediate effective parasite inhibition in pre-clinical models.


Subject(s)
Parasites , Plasmodium falciparum/immunology , Animals , Antibodies, Protozoan , Humans , Malaria , Malaria, Falciparum , Sporozoites
2.
Immunity ; 47(6): 1197-1209.e10, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29195810

ABSTRACT

Antibodies against the NANP repeat of circumsporozoite protein (CSP), the major surface antigen of Plasmodium falciparum (Pf) sporozoites, can protect from malaria in animal models but protective humoral immunity is difficult to induce in humans. Here we cloned and characterized rare affinity-matured human NANP-reactive memory B cell antibodies elicited by natural Pf exposure that potently inhibited parasite transmission and development in vivo. We unveiled the molecular details of antibody binding to two distinct protective epitopes within the NANP repeat. NANP repeat recognition was largely mediated by germline encoded and immunoglobulin (Ig) heavy-chain complementarity determining region 3 (HCDR3) residues, whereas affinity maturation contributed predominantly to stabilizing the antigen-binding site conformation. Combined, our findings illustrate the power of exploring human anti-CSP antibody responses to develop tools for malaria control in the mammalian and the mosquito vector and provide a molecular basis for the structure-based design of next-generation CSP malaria vaccines.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunity, Humoral , Immunoglobulin Heavy Chains/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/chemistry , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , B-Lymphocytes/immunology , B-Lymphocytes/parasitology , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Female , Gene Expression , Humans , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/chemistry , Immunologic Memory , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Mice , Models, Molecular , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sporozoites/chemistry , Sporozoites/immunology
3.
PLoS Pathog ; 18(11): e1010999, 2022 11.
Article in English | MEDLINE | ID: mdl-36441829

ABSTRACT

Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Mice , Animals , Plasmodium falciparum , Cryoelectron Microscopy , Malaria, Falciparum/parasitology , Protozoan Proteins , Malaria/parasitology , Mice, Transgenic , Antibodies, Monoclonal , Antibodies, Protozoan
4.
Immunity ; 37(4): 611-21, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23063329

ABSTRACT

Celiac disease is a human leukocyte antigen (HLA)-DQ2- and/or DQ8-associated T cell-mediated disorder that is induced by dietary gluten. Although it is established how gluten peptides bind HLA-DQ8 and HLA-DQ2, it is unclear how such peptide-HLA complexes are engaged by the T cell receptor (TCR), a recognition event that triggers disease pathology. We show that biased TCR usage (TRBV9(∗)01) underpins the recognition of HLA-DQ8-α-I-gliadin. The structure of a prototypical TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin complex shows that the TCR docks centrally above HLA-DQ8-α-I-gliadin, in which all complementarity-determining region-ß (CDRß) loops interact with the gliadin peptide. Mutagenesis at the TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin interface provides an energetic basis for the Vß bias. Moreover, CDR3 diversity accounts for TRBV9(∗)01(+) TCRs exhibiting differing reactivities toward the gliadin epitopes at various deamidation states. Accordingly, biased TCR usage is an important factor in the pathogenesis of DQ8-mediated celiac disease.


Subject(s)
Celiac Disease/immunology , Gliadin/immunology , HLA-DQ Antigens/immunology , Receptors, Antigen, T-Cell/immunology , Amino Acid Sequence , Epitopes, T-Lymphocyte/immunology , HLA-DQ Antigens/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Peptide Fragments/immunology , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell/chemistry
5.
J Biol Chem ; 293(9): 3236-3251, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29317506

ABSTRACT

The HLA-DRB1 locus is strongly associated with rheumatoid arthritis (RA) susceptibility, whereupon citrullinated self-peptides bind to HLA-DR molecules bearing the shared epitope (SE) amino acid motif. However, the differing propensity for citrullinated/non-citrullinated self-peptides to bind given HLA-DR allomorphs remains unclear. Here, we used a fluorescence polarization assay to determine a hierarchy of binding affinities of 34 self-peptides implicated in RA against three HLA-DRB1 allomorphs (HLA-DRB1*04:01/*04:04/*04:05) each possessing the SE motif. For all three HLA-DRB1 allomorphs, we observed a strong correlation between binding affinity and citrullination at P4 of the bound peptide ligand. A differing hierarchy of peptide-binding affinities across the three HLA-DRB1 allomorphs was attributable to the ß-chain polymorphisms that resided outside the SE motif and were consistent with sequences of naturally presented peptide ligands. Structural determination of eight HLA-DR4-self-epitope complexes revealed strict conformational convergence of the P4-Cit and surrounding HLA ß-chain residues. Polymorphic residues that form part of the P1 and P9 pockets of the HLA-DR molecules provided a structural basis for the preferential binding of the citrullinated self-peptides to the HLA-DR4 allomorphs. Collectively, we provide a molecular basis for the interplay between citrullination of self-antigens and HLA polymorphisms that shape peptide-HLA-DR4 binding affinities in RA.


Subject(s)
Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Citrullination , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/metabolism , Peptides/metabolism , Polymorphism, Genetic , Amino Acid Sequence , Arthritis, Rheumatoid/immunology , Autoantigens/chemistry , Autoantigens/metabolism , Citrulline/metabolism , HLA-DRB1 Chains/chemistry , Humans , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Conformation, beta-Strand , Substrate Specificity
6.
J Immunol ; 198(3): 1056-1065, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28003379

ABSTRACT

The human invariant NK (iNK) TCR is largely composed of the invariant TCR Vα24-Jα18 chain and semivariant TCR Vß11 chains with variable CDR3ß sequences. The direct role of CDR3ß in Ag recognition has been studied extensively. Although it was noted that CDR3ß can interact with CDR3α, how this interaction might indirectly influence Ag recognition is not fully elucidated. We observed that the third position of Vß11 CDR3 can encode an Arg or Ser residue as a result of somatic rearrangement. Clonotypic analysis of the two iNK TCR types with a single amino acid substitution revealed that the staining intensity by anti-Vα24 Abs depends on whether Ser or Arg is encoded. When stained with an anti-Vα24-Jα18 Ab, human primary invariant NKT cells could be divided into Vα24 low- and high-intensity subsets, and Arg-encoding TCR Vß11 chains were more frequently isolated from the Vα24 low-intensity subpopulation compared with the Vα24 high-intensity subpopulation. The Arg/Ser substitution also influenced Ag recognition as determined by CD1d multimer staining and CD1d-restricted functional responses. Importantly, in silico modeling validated that this Ser-to-Arg mutation could alter the structure of the CDR3ß loop, as well as the CDR3α loop. Collectively, these results indicate that the Arg/Ser encoded at the third CDR3ß residue can effectively modulate the overall structure of, and Ag recognition by, human iNK TCRs.


Subject(s)
Antigens/immunology , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell/immunology , Antigens, CD1d/immunology , Complementarity Determining Regions/chemistry , Humans , Molecular Dynamics Simulation
7.
Ann Rheum Dis ; 76(11): 1915-1923, 2017 11.
Article in English | MEDLINE | ID: mdl-28801345

ABSTRACT

OBJECTIVE: The pathogenetic mechanisms by which HLA-DRB1 alleles are associated with anticitrullinated peptide antibody (ACPA)-positive rheumatoid arthritis (RA) are incompletely understood. RA high-risk HLA-DRB1 alleles are known to share a common motif, the 'shared susceptibility epitope (SE)'. Here, the electropositive P4 pocket of HLA-DRB1 accommodates self-peptide residues containing citrulline but not arginine. HLA-DRB1 His/Phe13ß stratifies with ACPA-positive RA, while His13ßSer polymorphisms stratify with ACPA-negative RA and RA protection. Indigenous North American (INA) populations have high risk of early-onset ACPA-positive RA, whereby HLA-DRB1*04:04 and HLA-DRB1*14:02 are implicated as risk factors for RA in INA. However, HLA-DRB1*14:02 has a His13ßSer polymorphism. Therefore, we aimed to verify this association and determine its molecular mechanism. METHODS: HLA genotype was compared in 344 INA patients with RA and 352 controls. Structures of HLA-DRB1*1402-class II loaded with vimentin-64Arg59-71, vimentin-64Cit59-71 and fibrinogen ß-74Cit69-81 were solved using X-ray crystallography. Vimentin-64Cit59-71-specific and vimentin59-71-specific CD4+ T cells were characterised by flow cytometry using peptide-histocompatibility leukocyte antigen (pHLA) tetramers. After sorting of antigen-specific T cells, TCRα and ß-chains were analysed using multiplex, nested PCR and sequencing. RESULTS: ACPA+ RA in INA was independently associated with HLA-DRB1*14:02. Consequent to the His13ßSer polymorphism and altered P4 pocket of HLA-DRB1*14:02, both citrulline and arginine were accommodated in opposite orientations. Oligoclonal autoreactive CD4+ effector T cells reactive with both citrulline and arginine forms of vimentin59-71 were observed in patients with HLA-DRB1*14:02+ RA and at-risk ACPA- first-degree relatives. HLA-DRB1*14:02-vimentin59-71-specific and HLA-DRB1*14:02-vimentin-64Cit59-71-specific CD4+ memory T cells were phenotypically distinct populations. CONCLUSION: HLA-DRB1*14:02 broadens the capacity for citrullinated and native self-peptide presentation and T cell expansion, increasing risk of ACPA+ RA.


Subject(s)
/genetics , Arthritis, Rheumatoid/ethnology , Arthritis, Rheumatoid/genetics , Genetic Predisposition to Disease/ethnology , HLA-DRB1 Chains/genetics , Indians, North American/genetics , Alaska/ethnology , Alleles , Arginine/genetics , Arginine/immunology , Autoantibodies/blood , Autoantibodies/immunology , CD4-Positive T-Lymphocytes/immunology , Canada/ethnology , Case-Control Studies , Citrulline/genetics , Citrulline/immunology , Female , Flow Cytometry , Genotype , Humans , Male , Peptides, Cyclic/immunology , Polymorphism, Genetic , Risk Factors , Vimentin/genetics
9.
Nat Commun ; 14(1): 2219, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37072430

ABSTRACT

Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Animals , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antigens, Protozoan , Cysteine/metabolism , Malaria, Falciparum/parasitology , Erythrocytes/parasitology , Merozoites/metabolism
10.
NPJ Vaccines ; 8(1): 52, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029167

ABSTRACT

The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability. Here, we report a Helicobacter pylori apoferritin-based nanoparticle immunogen that elicits strong B cell responses against PfCSP epitopes that are targeted by the most potent human monoclonal antibodies. Glycan engineering of the scaffold and fusion of an exogenous T cell epitope enhanced the anti-PfCSP B cell response eliciting strong, long-lived and protective humoral immunity in mice. Our study highlights the power of rational vaccine design to generate a highly efficacious second-generation anti-infective malaria vaccine candidate and provides the basis for its further development.

11.
Nat Microbiol ; 7(12): 2039-2053, 2022 12.
Article in English | MEDLINE | ID: mdl-36396942

ABSTRACT

The most severe form of malaria is caused by Plasmodium falciparum. These parasites invade human erythrocytes, and an essential step in this process involves the ligand PfRh5, which forms a complex with cysteine-rich protective antigen (CyRPA) and PfRh5-interacting protein (PfRipr) (RCR complex) and binds basigin on the host cell. We identified a heteromeric disulfide-linked complex consisting of P. falciparum Plasmodium thrombospondin-related apical merozoite protein (PfPTRAMP) and P. falciparum cysteine-rich small secreted protein (PfCSS) and have shown that it binds RCR to form a pentameric complex, PCRCR. Using P. falciparum lines with conditional knockouts, invasion inhibitory nanobodies to both PfPTRAMP and PfCSS, and lattice light-sheet microscopy, we show that they are essential for merozoite invasion. The PCRCR complex functions to anchor the contact between merozoite and erythrocyte membranes brought together by strong parasite deformations. We solved the structure of nanobody-PfCSS complexes to identify an inhibitory epitope. Our results define the function of the PCRCR complex and identify invasion neutralizing epitopes providing a roadmap for structure-guided development of these proteins for a blood stage malaria vaccine.


Subject(s)
Blood Group Antigens , Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Cysteine , Erythrocytes , Epitopes
12.
J Biol Chem ; 285(8): 5188-95, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-19948665

ABSTRACT

Bacillus anthracis is a gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 A) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 A(2)) increase in buried surface area at the tetramerization interface of the pyruvate-bound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an "Achilles heel" that can be exploited in structure-based drug design.


Subject(s)
Anthrax/enzymology , Bacillus anthracis/enzymology , Bacterial Proteins/chemistry , Hydro-Lyases/chemistry , Pyruvic Acid/chemistry , Amino Acid Substitution , Anthrax/drug therapy , Anthrax/genetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacillus anthracis/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Warfare Agents , Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Mutation, Missense , Protein Structure, Quaternary/physiology , Pyruvic Acid/metabolism
13.
Nat Med ; 26(7): 1135-1145, 2020 07.
Article in English | MEDLINE | ID: mdl-32451496

ABSTRACT

The circumsporozoite protein of the human malaria parasite Plasmodium falciparum (PfCSP) is the main target of antibodies that prevent the infection and disease, as shown in animal models. However, the limited efficacy of the PfCSP-based vaccine RTS,S calls for a better understanding of the mechanisms driving the development of the most potent human PfCSP antibodies and identification of their target epitopes. By characterizing 200 human monoclonal PfCSP antibodies induced by sporozoite immunization, we establish that the most potent antibodies bind around a conserved (N/D)PNANPN(V/A) core. High antibody affinity to the core correlates with protection from parasitemia in mice and evolves around the recognition of NANP motifs. The data suggest that the rational design of a next-generation PfCSP vaccine that elicits high-affinity antibody responses against the core epitope will promote the induction of protective humoral immune responses.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Animals , Antibody Formation/immunology , Epitopes/immunology , Evolution, Molecular , Female , Humans , Immunity, Humoral , Malaria Vaccines/genetics , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Mice , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Sporozoites/immunology , Sporozoites/pathogenicity
14.
J Exp Med ; 217(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-32790871

ABSTRACT

Malaria is a global health concern, and research efforts are ongoing to develop a superior vaccine to RTS,S/AS01. To guide immunogen design, we seek a comprehensive understanding of the protective humoral response against Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). In contrast to the well-studied responses to the repeat region and the C-terminus, the antibody response against the N-terminal domain of PfCSP (N-CSP) remains obscure. Here, we characterized the molecular recognition and functional efficacy of the N-CSP-specific monoclonal antibody 5D5. The crystal structure at 1.85-Å resolution revealed that 5D5 binds an α-helical epitope in N-CSP with high affinity through extensive shape and charge complementarity and the unusual utilization of an antibody N-linked glycan. Nevertheless, functional studies indicated low 5D5 binding to live Pf sporozoites and lack of sporozoite inhibition in vitro and in vivo. Overall, our data do not support the inclusion of the 5D5 N-CSP epitope into the next generation of CSP-based vaccines.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Antibody Affinity , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protein Domains/immunology , Protozoan Proteins/immunology , Animals , Anopheles/parasitology , Epitopes/chemistry , Epitopes/immunology , Female , Malaria, Falciparum/parasitology , Protein Conformation, alpha-Helical , Sporozoites/immunology
15.
Article in English | MEDLINE | ID: mdl-19194017

ABSTRACT

Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the lysine-biosynthesis pathway in bacteria, plants and some fungi. In this study, the expression of DHDPS from Bacillus anthracis (Ba-DHDPS) and the purification of the recombinant enzyme in the absence and presence of the substrate pyruvate are described. It is shown that DHDPS from B. anthracis purified in the presence of pyruvate yields greater amounts of recombinant enzyme with more than 20-fold greater specific activity compared with the enzyme purified in the absence of substrate. It was therefore sought to crystallize Ba-DHDPS in the presence of the substrate. Pyruvate was soaked into crystals of Ba-DHDPS prepared in 0.2 M sodium fluoride, 20%(w/v) PEG 3350 and 0.1 M bis-tris propane pH 8.0. Preliminary X-ray diffraction data of the recombinant enzyme soaked with pyruvate at a resolution of 2.15 A are presented. The pending crystal structure of the pyruvate-bound form of Ba-DHDPS will provide insight into the function and stability of this essential bacterial enzyme.


Subject(s)
Bacillus anthracis/enzymology , Gene Expression Regulation, Bacterial/physiology , Hydro-Lyases/biosynthesis , Hydro-Lyases/isolation & purification , Pyruvic Acid/chemistry , X-Ray Diffraction , Bacillus anthracis/genetics , Crystallization , Hydro-Lyases/genetics , Isoenzymes/biosynthesis , Isoenzymes/genetics , Isoenzymes/isolation & purification , Substrate Specificity/genetics , X-Ray Diffraction/methods
16.
Nat Commun ; 10(1): 4328, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31551421

ABSTRACT

Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25; 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines.


Subject(s)
Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Antibodies, Protozoan/chemistry , Antibody Formation , Binding Sites, Antibody , Crystallography, X-Ray , Humans , Malaria, Falciparum/transmission , Protozoan Proteins/chemistry
17.
J Exp Med ; 215(1): 63-75, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29167197

ABSTRACT

Antibodies against the central repeat of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) inhibit parasite activity and correlate with protection from malaria. However, the humoral response to the PfCSP C terminus (C-PfCSP) is less well characterized. Here, we describe B cell responses to C-PfCSP from European donors who underwent immunization with live Pf sporozoites (PfSPZ Challenge) under chloroquine prophylaxis (PfSPZ-CVac), and were protected against controlled human malaria infection. Out of 215 PfCSP-reactive monoclonal antibodies, only two unique antibodies were specific for C-PfCSP, highlighting the rare occurrence of C-PfCSP-reactive B cells in PfSPZ-CVac-induced protective immunity. These two antibodies showed poor sporozoite binding and weak inhibition of parasite traversal and development, and did not protect mice from infection with PfCSP transgenic Plasmodium berghei sporozoites. Structural analyses demonstrated that one antibody interacts with a polymorphic region overlapping two T cell epitopes, suggesting that variability in C-PfCSP may benefit parasite escape from humoral and cellular immunity. Our data identify important features underlying C-PfCSP shortcomings as a vaccine target.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Amino Acid Sequence , Epitopes/immunology , Epitopes, T-Lymphocyte/immunology , Malaria, Falciparum/prevention & control , Models, Molecular , Protein Conformation , Protein Domains/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins , Vaccination
19.
Science ; 360(6395): 1358-1362, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29880723

ABSTRACT

Affinity maturation selects B cells expressing somatically mutated antibody variants with improved antigen-binding properties to protect from invading pathogens. We determined the molecular mechanism underlying the clonal selection and affinity maturation of human B cells expressing protective antibodies against the circumsporozoite protein of the malaria parasite Plasmodium falciparum (PfCSP). We show in molecular detail that the repetitive nature of PfCSP facilitates direct homotypic interactions between two PfCSP repeat-bound monoclonal antibodies, thereby improving antigen affinity and B cell activation. These data provide a mechanistic explanation for the strong selection of somatic mutations that mediate homotypic antibody interactions after repeated parasite exposure in humans. Our findings demonstrate a different mode of antigen-mediated affinity maturation to improve antibody responses to PfCSP and presumably other repetitive antigens.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Affinity/immunology , Antibody Formation/immunology , Antigens, Protozoan/immunology , B-Lymphocytes/immunology , Epitopes, B-Lymphocyte/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Antibodies, Protozoan/chemistry , Antibodies, Protozoan/genetics , Antibody Affinity/genetics , Antibody Formation/genetics , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Humans , Lymphocyte Activation , Mutation , Protozoan Proteins/genetics , Repetitive Sequences, Nucleic Acid/genetics , Repetitive Sequences, Nucleic Acid/immunology , Selection, Genetic
20.
Nat Commun ; 8(1): 1568, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29146922

ABSTRACT

The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Blocking/chemistry , Antibodies, Blocking/immunology , Antibodies, Protozoan/chemistry , Antibodies, Protozoan/immunology , Crystallography, X-Ray , Female , HEK293 Cells , Humans , Immunization , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Male , Mice, Transgenic , Plasmodium falciparum/metabolism , Protein Binding , Protein Domains , Protozoan Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL