Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Vet Res ; 55(1): 5, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173025

ABSTRACT

Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.


Subject(s)
Influenza A Virus, H7N7 Subtype , Influenza A virus , Influenza in Birds , Humans , Animals , Chickens/metabolism , Virulence , Viral Proteins/metabolism , Influenza A virus/metabolism , Virulence Factors/genetics , Mammals
2.
Anal Bioanal Chem ; 416(19): 4383-4396, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38904797

ABSTRACT

Antibodies for treatment and prophylaxis against SARS-CoV-2 are needed particularly for immunocompromised individuals, who cannot adequately benefit from vaccination. To address this need, Aerium Therapeutics is developing antibodies targeting the SARS-CoV-2 spike protein. A bioanalytical method to quantify fully human monoclonal antibodies in a population with widely varying anti-spike antibody titers is required to investigate the pharmacokinetics of these antibodies in clinical trials. To eliminate interference from endogenous anti-spike protein antibodies, an HPLC-MS/MS assay was developed to quantify the investigational monoclonal antibodies (AER001 and AER002) by targeting signature peptides spanning the monoclonal antibodies' CDR regions. By optimizing and comparing affinity capture and ammonium sulphate precipitation, it was demonstrated that both procedures allowed accurate and precise quantification of AER001 and AER002 in human serum with comparable sensitivity. Ammonium sulphate precipitation outperformed immunocapture due to its simplicity and speed at lower cost and a full bioanalytical method validation was performed in human serum. The assay was also validated for human nasal lining fluid extract with a 50-fold lower limit of quantification and was shown to deliver similar sensitivity to previously published affinity capture HPLC-MS/MS assays. Finally, the CDR-derived signature peptides were also generated by tryptic digestion of blank serum in some individuals, an important caveat for HPLC-MS/MS strategies targeting human monoclonal antibodies. In summary, the presented results show that ammonium sulphate precipitation and HPLC-MS/MS allow accurate and precise quantification of monoclonals in clinical studies. The developed methods demonstrate that HPLC-MS/MS can reliably quantify human monoclonal antibodies even when endogenous antibodies with overlapping specificities are present and are crucial for the clinical testing of two investigational COVID-19 monoclonals.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19 , Humans , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Chromatography, High Pressure Liquid/methods , COVID-19/blood , Limit of Detection , Liquid Chromatography-Mass Spectrometry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tandem Mass Spectrometry/methods
3.
J Phys Chem Lett ; 15(28): 7295-7301, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38980149

ABSTRACT

Ion mobility spectrometry at room temperature was combined with vibrationally resolved electronic spectroscopy of mass-selected ions at 5 K to study the well-known cationic fluorophore acriflavine. One- and two-color photodepletion action spectra recorded in gas-phase (by helium tagging) as well as dispersed fluorescence spectra obtained in neon matrix (after soft-landing deposition) indicate that the primary cation mass electrosprayed from solution comprises two isomers with different optical properties. Theory at the TD-DFT level allowed full spectral assignment. The results have implications for the preparation of novel thin film photonic materials by low-energy ion beam deposition.

SELECTION OF CITATIONS
SEARCH DETAIL