Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Publication year range
1.
Mod Pathol ; 34(4): 748-757, 2021 04.
Article in English | MEDLINE | ID: mdl-33299109

ABSTRACT

Alveolar Rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with about 80% of cases characterized by either a t(1;13)(p36;q14) or t(2;13)(q35;q14), which results in the formation of the fusion oncogenes PAX7-FOXO1 and PAX3-FOXO1, respectively. Since patients with fusion-positive ARMS (FP-RMS) have a poor prognosis and are treated with an aggressive therapeutic regimen, correct classification is of clinical importance. Detection of the translocation by different molecular methods is used for diagnostics, including fluorescence in situ hybridization and RT-PCR or NGS based approaches. Since these methods are complex and time consuming, we developed specific monoclonal antibodies (mAbs) directed to the junction region on the PAX3-FOXO1 fusion protein. Two mAbs, PFM.1 and PFM.2, were developed and able to immunoprecipitate in vitro-translated PAX3-FOXO1 and cellular PAX3-FOXO1 from FP-RMS cells. Furthermore, the mAbs recognized a 105 kDa band in PAX3-FOXO1-transfected cells and in FP-RMS cell lines. The mAbs did not recognize proteins in fusion-negative embryonal rhabdomyosarcoma cell lines, nor did they recognize PAX3 or FOXO1 alone when compared to anti-PAX3 and anti-FOXO1 antibodies. We next evaluated the ability of mAb PFM.2 to detect the fusion protein by immunohistochemistry. Both PAX3-FOXO1 and PAX7-FOXO1 were detected in HEK293 cells transfected with the corresponding cDNAs. Subsequently, we stained 26 primary tumor sections and a rhabdomyosarcoma tissue array and detected both fusion proteins with a positive predictive value of 100%, negative predictive value of 98%, specificity of 100% and a sensitivity of 91%. While tumors are stained homogenously in PAX3-FOXO1 cases, the staining pattern is heterogenous with scattered positive cells only in tumors expressing PAX7-FOXO1. No staining was observed in stromal cells, embryonal rhabdomyosarcoma, and fusion-negative rhabdomyosarcoma. These results demonstrate that mAbs specific for the chimeric oncoproteins PAX3-FOXO1 and PAX7-FOXO1 can be used efficiently for simple and fast subclassification of rhabdomyosarcoma in routine diagnostics via immunohistochemical detection.


Subject(s)
Antibodies, Monoclonal/immunology , Biomarkers, Tumor/analysis , Immunohistochemistry , Oncogene Proteins, Fusion/analysis , Paired Box Transcription Factors/analysis , Rhabdomyosarcoma, Alveolar/immunology , Adolescent , Adult , Animals , Antibody Specificity , Child , Child, Preschool , Female , HEK293 Cells , HeLa Cells , Humans , Infant , Male , Mice , Middle Aged , NIH 3T3 Cells , Oncogene Proteins, Fusion/immunology , Paired Box Transcription Factors/immunology , Predictive Value of Tests , Reproducibility of Results , Rhabdomyosarcoma, Alveolar/pathology , Young Adult
2.
Semin Cancer Biol ; 50: 115-123, 2018 06.
Article in English | MEDLINE | ID: mdl-29146205

ABSTRACT

Driver oncogenes are prime targets for therapy in tumors many of which, including leukemias and sarcomas, express recurrent fusion transcription factors. One specific example for such a cancer type is alveolar rhabdomyosarcoma, which is associated in the majority of cases with the fusion protein PAX3-FOXO1. Since fusion transcription factors are challenging targets for development of small molecule inhibitors, indirect inhibitory strategies for this type of oncogenes represent a more promising approach. One can envision strategies at different molecular levels including upstream modifiers and activators, epigenetic and transcriptional co-regulators, and downstream effector targets. In this review, we will discuss the current knowledge regarding potential therapeutic targets that might contribute to indirect interference with PAX3-FOXO1 activity in alveolar rhabdomyosarcoma at the different molecular levels and extrapolate these findings to fusion transcription factors in general.


Subject(s)
Forkhead Box Protein O1/genetics , Oncogene Proteins, Fusion/genetics , PAX3 Transcription Factor/genetics , Rhabdomyosarcoma, Alveolar/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Targeted Therapy , Rhabdomyosarcoma, Alveolar/pathology , Transcription Factors/genetics
3.
Semin Cell Dev Biol ; 44: 126-34, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26391565

ABSTRACT

PAX transcription factors are key players in the development of different tissues and organs. At the cellular level they are involved in regulating lineage commitment and differentiation. Interference with these tightly regulated functions of PAX proteins is associated with developmental abnormalities and tumorigenesis of several types of cancer. As a result of aberrant PAX protein activity, either by gain- or loss of function mechanisms, affected cells are kept in a proliferative state by blocking their terminal differentiation. PAX proteins with a gain-of-function role in cancer are active in the proliferative state of cells and have to be downregulated before they can complete the differentiation process. Such PAX proteins are usually activated in malignancies by chromosomal translocations generating fusions with strong transcriptional activators. PAX proteins with tumor suppressor activity are actively driving the differentiation process and are necessary for the exit from the proliferative state. In cancer, a diverse set of mutational mechanisms is involved in reducing their activity. Here, we discuss the characteristics of mutant PAX proteins in different types of cancer including alveolar rhabdomyosarcoma, biphenotypic sinonasal sarcoma, thyroid cancer and leukemia, with special focus on their role in interference with normal differentiation pathways of the cell lineage involved.


Subject(s)
Mutation , Neoplasms/genetics , Paired Box Transcription Factors/genetics , Animals , Humans , Neoplasms/metabolism , Paired Box Transcription Factors/metabolism
4.
J Biol Chem ; 291(52): 26922-26933, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-27875302

ABSTRACT

E-26 transformation-specific (ETS) proteins are transcription factors directing gene expression through their conserved DNA binding domain. They are implicated as truncated forms or interchromosomal rearrangements in a variety of tumors including Ewing sarcoma, a pediatric tumor of the bone. Tumor cells express the chimeric oncoprotein EWS-FLI1 from a specific t(22;11)(q24;12) translocation. EWS-FLI1 harbors a strong transactivation domain from EWSR1 and the DNA-binding ETS domain of FLI1 in the C-terminal part of the protein. Although Ewing cells are crucially dependent on continuous expression of EWS-FLI1, its regulation of turnover has not been characterized in detail. Here, we identify the EWS-FLI1 protein as a substrate of the ubiquitin-proteasome system with a characteristic polyubiquitination pattern. Using a global protein stability approach, we determined the half-life of EWS-FLI1 to lie between 2 and 4 h, whereas full-length EWSR1 and FLI1 were more stable. By mass spectrometry, we identified two ubiquitin acceptor lysine residues of which only mutation of Lys-380 in the ETS domain of the FLI1 part abolished EWS-FLI1 ubiquitination and stabilized the protein posttranslationally. Expression of this highly stable mutant protein in Ewing cells while simultaneously depleting the endogenous wild type protein differentially modulates two subgroups of target genes to be either EWS-FLI1 protein-dependent or turnover-dependent. The majority of target genes are in an unaltered state and cannot be further activated. Our study provides novel insights into EWS-FLI1 turnover, a critical pathway in Ewing sarcoma pathogenesis, and lays new ground to develop novel therapeutic strategies in Ewing sarcoma.


Subject(s)
Bone Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Lysine/metabolism , Mutant Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , HEK293 Cells , Humans , Lysine/genetics , Mutant Proteins/genetics , Mutation/genetics , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic , Proteolysis , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Ubiquitination
5.
Int J Cancer ; 135(7): 1543-52, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24550147

ABSTRACT

Biological heterogeneity represents a major obstacle for cancer treatment. Therefore, characterization of treatment-relevant tumor heterogeneity is necessary to develop more effective therapies in the future. Here, we uncovered population heterogeneity among PAX/FOXO1-positive alveolar rhabdomyosarcoma by characterizing prosurvival networks initiated by FGFR4 signaling. We found that FGFR4 signaling rescues only subgroups of alveolar rhabdomyosarcoma cells from apoptosis induced by compounds targeting the IGF1R-PI3K-mTOR pathway. Differences in both proapoptotic machinery and FGFR4-activated signaling are involved in the different behavior of the phenotypes. Proapoptotic stress induced by the kinase inhibitors is sensed by Bim/Bad in rescue cells and by Bmf in nonrescue cells. Anti-apoptotic ERK1/2 signaling downstream of FGFR4 is long-lasting in rescue and short-termed in most non-rescue cells. Gene expression analysis detected signatures specific for these two groups also in biopsy samples. The different cell phenotypes are present in different ratios in alveolar rhabdomyosarcoma tumors and can be identified by AP2ß expression levels. Hence, inhibiting FGFR signaling might represent an important strategy to enhance efficacy of current RMS treatments.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Biomarkers, Tumor/genetics , Membrane Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Rhabdomyosarcoma, Alveolar/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Gene Expression Profiling , Humans , Immunoenzyme Techniques , Membrane Proteins/genetics , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Rhabdomyosarcoma, Alveolar/classification , Rhabdomyosarcoma, Alveolar/drug therapy , Rhabdomyosarcoma, Alveolar/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
6.
Cancers (Basel) ; 16(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611033

ABSTRACT

Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.

7.
Cancer Res ; 84(2): 241-257, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37963210

ABSTRACT

Ewing sarcoma is an aggressive cancer with a defective response to DNA damage leading to an enhanced sensitivity to genotoxic agents. Mechanistically, Ewing sarcoma is driven by the fusion transcription factor EWS-FLI1, which reprograms the tumor cell epigenome. The nucleosome remodeling and deacetylase (NuRD) complex is an important regulator of chromatin function, controlling both gene expression and DNA damage repair, and has been associated with EWS-FLI1 activity. Here, a NuRD-focused CRISPR/Cas9 inactivation screen identified the helicase CHD4 as essential for Ewing sarcoma cell proliferation. CHD4 silencing induced tumor cell death by apoptosis and abolished colony formation. Although CHD4 and NuRD colocalized with EWS-FLI1 at enhancers and super-enhancers, CHD4 promoted Ewing sarcoma cell survival not by modulating EWS-FLI1 activity and its oncogenic gene expression program but by regulating chromatin structure. CHD4 depletion led to a global increase in DNA accessibility and induction of spontaneous DNA damage, resulting in an increased susceptibility to DNA-damaging agents. CHD4 loss delayed tumor growth in vivo, increased overall survival, and combination with PARP inhibition by olaparib treatment further suppressed tumor growth. Collectively, these findings highlight the NuRD subunit CHD4 as a therapeutic target in Ewing sarcoma that can potentiate the antitumor activity of genotoxic agents. SIGNIFICANCE: CRISPR/Cas9 screening in Ewing sarcoma identifies a dependency on CHD4, which is crucial for the maintenance of chromatin architecture to suppress DNA damage and a promising therapeutic target for DNA damage repair-deficient malignancies.


Subject(s)
Mi-2 Nucleosome Remodeling and Deacetylase Complex , Sarcoma, Ewing , Humans , Cell Line, Tumor , Cell Survival , Chromatin/genetics , DNA , Gene Expression Regulation, Neoplastic , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
8.
Mol Cancer Ther ; 23(6): 864-876, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38471796

ABSTRACT

Rhabdomyosarcoma (RMS) is a highly aggressive pediatric cancer with features of skeletal muscle differentiation. More than 80% of the high-risk patients ultimately fail to respond to chemotherapy treatment, leading to limited therapeutic options and dismal prognostic rates. The lack of response and subsequent tumor recurrence is driven in part by stem cell-like cells, the tumor subpopulation that is enriched after treatment, and characterized by expression of the AXL receptor tyrosine kinase (AXL). AXL mediates survival, migration, and therapy resistance in several cancer types; however, its function in RMS remains unclear. In this study, we investigated the role of AXL in RMS tumorigenesis, migration, and chemotherapy response, and whether targeting of AXL with small-molecule inhibitors could potentiate the efficacy of chemotherapy. We show that AXL is expressed in a heterogeneous manner in patient-derived xenografts (PDX), primary cultures and cell line models of RMS, consistent with its stem cell-state selectivity. By generating a CRISPR/Cas9 AXL knock-out and overexpressing models, we show that AXL contributes to the migratory phenotype of RMS, but not to chemotherapy resistance. Instead, pharmacologic blockade with the AXL inhibitors bemcentinib (BGB324), cabozantinib and NPS-1034 rapidly killed RMS cells in an AXL-independent manner and augmented the efficacy of the chemotherapeutics vincristine and cyclophosphamide. In vivo administration of the combination of bemcentinib and vincristine exerted strong antitumoral activity in a rapidly progressing PDX mouse model, significantly reducing tumor burden compared with single-agent treatment. Collectively, our data identify bemcentinib as a promising drug to improve chemotherapy efficacy in patients with RMS.


Subject(s)
Axl Receptor Tyrosine Kinase , Benzocycloheptenes , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Rhabdomyosarcoma , Humans , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Mice , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Benzocycloheptenes/pharmacology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Child , Cell Proliferation/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cell Movement/drug effects , Protein Kinase Inhibitors/pharmacology , Triazoles
9.
Leukemia ; 38(6): 1315-1322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744919

ABSTRACT

Minimal/measurable residual disease (MRD) diagnostics using real-time quantitative PCR analysis of rearranged immunoglobulin and T-cell receptor gene rearrangements are nowadays implemented in most treatment protocols for patients with acute lymphoblastic leukemia (ALL). Within the EuroMRD Consortium, we aim to provide comparable, high-quality MRD diagnostics, allowing appropriate risk-group classification for patients and inter-protocol comparisons. To this end, we set up a quality assessment scheme, that was gradually optimized and updated over the last 20 years, and that now includes participants from around 70 laboratories worldwide. We here describe the design and analysis of our quality assessment scheme. In addition, we here report revised data interpretation guidelines, based on our newly generated data and extensive discussions between experts. The main novelty is the partial re-definition of the "positive below quantitative range" category by two new categories, "MRD low positive, below quantitative range" and "MRD of uncertain significance". The quality assessment program and revised guidelines will ensure reproducible and accurate MRD data for ALL patients. Within the Consortium, similar programs and guidelines have been introduced for other lymphoid diseases (e.g., B-cell lymphoma), for new technological platforms (e.g., digital droplet PCR or Next-Generation Sequencing), and for other patient-specific MRD PCR-based targets (e.g., fusion genes).


Subject(s)
Neoplasm, Residual , Humans , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Gene Rearrangement , Quality Assurance, Health Care , Practice Guidelines as Topic/standards , Genes, Immunoglobulin , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards
10.
Mol Cancer Ther ; 23(4): 507-519, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38159110

ABSTRACT

The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.


Subject(s)
Antineoplastic Agents , Neoplasms , Child , Humans , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Biomarkers , Cell Line, Tumor
11.
Blood ; 118(8): 2077-84, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21719599

ABSTRACT

The prognostic value of MRD in large series of childhood T-ALL has not yet been established. Trial AIEOP-BFM-ALL 2000 introduced standardized quantitative assessment of MRD for stratification, based on immunoglobulin and TCR gene rearrangements as polymerase chain reaction targets: Patients were considered MRD standard risk (MRD-SR) if MRD was negative at day 33 (time point 1 [TP1]) and day 78 (TP2), analyzed by at least 2 sensitive markers; MRD intermediate risk (MRD-IR) if positive either at day 33 or 78 and < 10(-3) at day 78; and MRD high risk (MRD-HR) if ≥ 10(-3) at day 78. A total of 464 patients with T-ALL were stratified by MRD: 16% of them were MRD-SR, 63% MRD-IR, and 21% MRD-HR. Their 7-year event-free-survival (SE) was 91.1% (3.5%), 80.6% (2.3%), and 49.8% (5.1%) (P < .001), respectively. Negativity of MRD at TP1 was the most favorable prognostic factor. An excellent outcome was also obtained in 32% of patients turning MRD negative only at TP2, indicating that early (TP1) MRD levels were irrelevant if MRD at TP2 was negative (48% of all patients). MRD ≥ 10(-3) at TP2 constitutes the most important predictive factor for relapse in childhood T-ALL. The study is registered at http://www.clinicaltrials.gov; "Combination Chemotherapy Based on Risk of Relapse in Treating Young Patients With Acute Lymphoblastic Leukemia," protocol identification #NCT00430118 for BFM and #NCT00613457 for AIEOP.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/classification , Adolescent , Antineoplastic Combined Chemotherapy Protocols , Child , Child, Preschool , Disease-Free Survival , Female , Gene Rearrangement, B-Lymphocyte , Gene Rearrangement, T-Lymphocyte , Humans , Infant , Male , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Prognosis , Prospective Studies , Risk Factors , Time Factors
12.
Cancers (Basel) ; 15(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37345159

ABSTRACT

Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.

13.
Sci Adv ; 9(6): eade9238, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36753540

ABSTRACT

Rhabdomyosarcoma (RMS) is a group of pediatric cancers with features of developing skeletal muscle. The cellular hierarchy and mechanisms leading to developmental arrest remain elusive. Here, we combined single-cell RNA sequencing, mass cytometry, and high-content imaging to resolve intratumoral heterogeneity of patient-derived primary RMS cultures. We show that the aggressive alveolar RMS (aRMS) subtype contains plastic muscle stem-like cells and cycling progenitors that drive tumor growth, and a subpopulation of differentiated cells that lost its proliferative potential and correlates with better outcomes. While chemotherapy eliminates cycling progenitors, it enriches aRMS for muscle stem-like cells. We screened for drugs hijacking aRMS toward clinically favorable subpopulations and identified a combination of RAF and MEK inhibitors that potently induces myogenic differentiation and inhibits tumor growth. Overall, our work provides insights into the developmental states underlying aRMS aggressiveness, chemoresistance, and progression and identifies the RAS pathway as a promising therapeutic target.


Subject(s)
Antineoplastic Agents , Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma , Child , Humans , Rhabdomyosarcoma, Alveolar/drug therapy , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/pathology , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Muscle, Skeletal/metabolism , Cell Differentiation , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
14.
Nat Commun ; 14(1): 8361, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102136

ABSTRACT

Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.


Subject(s)
RNA Polymerase II , Rhabdomyosarcoma, Alveolar , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Cysteine/metabolism , Transcription Factors/metabolism , PAX3 Transcription Factor/genetics , Rhabdomyosarcoma, Alveolar/genetics , RNA/metabolism , Transcriptional Activation , Protein Binding , Forkhead Box Protein O1/metabolism
15.
Blood Cancer Discov ; 4(2): 134-149, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36630200

ABSTRACT

Low hypodiploidy defines a rare subtype of B-cell acute lymphoblastic leukemia (B-ALL) with a dismal outcome. To investigate the genomic basis of low-hypodiploid ALL (LH-ALL) in adults, we analyzed copy-number aberrations, loss of heterozygosity, mutations, and cytogenetics data in a prospective cohort of Philadelphia (Ph)-negative B-ALL patients (n = 591, ages 18-84 years), allowing us to identify 80 LH-ALL cases (14%). Genomic analysis was critical for evidencing low hypodiploidy in many cases missed by cytogenetics. The proportion of LH-ALL within Ph-negative B-ALL dramatically increased with age, from 3% in the youngest patients (under 40 years old) to 32% in the oldest (over 55 years old). Somatic TP53 biallelic inactivation was the hallmark of adult LH-ALL, present in virtually all cases (98%). Strikingly, we detected TP53 mutations in posttreatment remission samples in 34% of patients. Single-cell proteogenomics of diagnosis and remission bone marrow samples evidenced a preleukemic, multilineage, TP53-mutant clone, reminiscent of age-related clonal hematopoiesis. SIGNIFICANCE: We show that low-hypodiploid ALL is a frequent entity within B-ALL in older adults, relying on somatic TP53 biallelic alteration. Our study unveils a link between aging and low-hypodiploid ALL, with TP53-mutant clonal hematopoiesis representing a preleukemic reservoir that can give rise to aneuploidy and B-ALL. See related commentary by Saiki and Ogawa, p. 102. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
Lymphoma, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Aged , Adult , Adolescent , Young Adult , Middle Aged , Aged, 80 and over , Clonal Hematopoiesis , Prospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Mutation , Aneuploidy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Suppressor Protein p53/genetics
16.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102140

ABSTRACT

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Subject(s)
Rhabdomyosarcoma , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Transcription Factors , Cell Transformation, Neoplastic , Cell Differentiation
17.
Int J Cancer ; 131(9): 2153-64, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22323082

ABSTRACT

Ewing's sarcoma family of tumors (EFT) is characterized by the presence of chromosomal translocations leading to the expression of oncogenic transcription factors such as, in the majority of cases, EWS/FLI1. Because of its key role in Ewing's sarcoma development and maintenance, EWS/FLI1 represents an attractive therapeutic target. Here, we characterize PHLDA1 as a novel direct target gene whose expression is repressed by EWS/FLI1. Using this gene and additional specific well-characterized target genes such as NROB1, NKX2.2 and CAV1, all activated by EWS/FLI1, as a read-out system, we screened a small-molecule compound library enriched for FDA-approved drugs that modulated the expression of EWS/FLI1 target genes. Among a hit-list of nine well-known drugs such as camptothecin, fenretinide, etoposide and doxorubicin, we also identified the kinase inhibitor midostaurin (PKC412). Subsequent experiments demonstrated that midostaurin is able to induce apoptosis in a panel of six Ewing's sarcoma cell lines in vitro and can significantly suppress xenograft tumor growth in vivo. These results suggest that midostaurin might be a novel drug that is active against Ewing's cells, which might act by modulating the expression of EWS/FLI1 target genes.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Staurosporine/analogs & derivatives , Animals , Apoptosis/drug effects , Caveolin 1/genetics , Cell Line, Tumor , Cell Survival , Enzyme Inhibitors/pharmacology , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Humans , Mice , Mice, Inbred NOD , Nuclear Proteins , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA Interference , RNA, Small Interfering , RNA-Binding Protein EWS/genetics , Random Allocation , Small Molecule Libraries , Staurosporine/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Xenograft Model Antitumor Assays , Zebrafish Proteins
18.
Sci Rep ; 12(1): 10671, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739280

ABSTRACT

As the second most common pediatric bone and soft tissue tumor, Ewing sarcoma (ES) is an aggressive disease with a pathognomonic chromosomal translocation t(11;22) resulting in expression of EWS-FLI1, an "undruggable" fusion protein acting as transcriptional modulator. EWS-FLI1 rewires the protein expression in cancer cells by activating and repressing a multitude of genes. The role and contribution of most repressed genes remains unknown to date. To address this, we established a CRISPR activation system in clonal SKNMC cell lines and interrogated a custom focused library covering 871 genes repressed by EWS-FLI1. Among the hits several members of the TGFß pathway were identified, where PEG10 emerged as prime candidate due to its strong antiproliferative effect. Mechanistic investigations revealed that PEG10 overexpression caused cellular dropout via induction of cell death. Furthermore, non-canonical TGFß pathways such as RAF/MEK/ERK, MKK/JNK, MKK/P38, known to lead to apoptosis or autophagy, were highly activated upon PEG10 overexpression. Our study sheds new light onto the contribution of TGFß signalling pathway repression to ES tumorigenesis and suggest that its re-activation might constitute a novel therapeutic strategy.


Subject(s)
Apoptosis Regulatory Proteins , DNA-Binding Proteins , Neuroectodermal Tumors, Primitive, Peripheral , RNA-Binding Proteins , Sarcoma, Ewing , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Child , Clustered Regularly Interspaced Short Palindromic Repeats , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , RNA-Binding Proteins/genetics , Sarcoma, Ewing/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
19.
Neoplasia ; 27: 100784, 2022 05.
Article in English | MEDLINE | ID: mdl-35366465

ABSTRACT

Oncogenic transcription factors lacking enzymatic activity or targetable binding pockets are typically considered "undruggable". An example is provided by the EWS-FLI1 oncoprotein, whose continuous expression and activity as transcription factor are critically required for Ewing sarcoma tumor formation, maintenance, and proliferation. Because neither upstream nor downstream targets have so far disabled its oncogenic potential, we performed a high-throughput drug screen (HTS), enriched for FDA-approved drugs, coupled to a Global Protein Stability (GPS) approach to identify novel compounds capable to destabilize EWS-FLI1 protein by enhancing its degradation through the ubiquitin-proteasome system. The protein stability screen revealed the dual histone deacetylase (HDAC) and phosphatidylinositol-3-kinase (PI3K) inhibitor called fimepinostat (CUDC-907) as top candidate to modulate EWS-FLI1 stability. Fimepinostat strongly reduced EWS-FLI1 protein abundance, reduced viability of several Ewing sarcoma cell lines and PDX-derived primary cells and delayed tumor growth in a xenograft mouse model, whereas it did not significantly affect healthy cells. Mechanistically, we demonstrated that EWS-FLI1 protein levels were mainly regulated by fimepinostat's HDAC activity. Our study demonstrates that HTS combined to GPS is a reliable approach to identify drug candidates able to modulate stability of EWS-FLI1 and lays new ground for the development of novel therapeutic strategies aimed to reduce Ewing sarcoma tumor progression.


Subject(s)
Sarcoma, Ewing , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Mice , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/pathology
20.
Eur J Cancer ; 172: 367-386, 2022 09.
Article in English | MEDLINE | ID: mdl-35839732

ABSTRACT

Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas in children/adolescents less than 18 years of age with an annual incidence of 1-2/million. Inter/intra-tumour heterogeneity raise challenges in clinical, pathological and biological research studies. Risk stratification in European and North American clinical trials previously relied on clinico-pathological features, but now, incorporates PAX3/7-FOXO1-fusion gene status in the place of alveolar histology. International working groups propose a coordinated approach through the INternational Soft Tissue SaRcoma ConsorTium to evaluate the specific genetic abnormalities and generate and integrate molecular and clinical data related to patients with RMS across different trial settings. We review relevant data and present a consensus view on what molecular features should be assessed. In particular, we recommend the assessment of the MYOD1-LR122R mutation for risk escalation, as it has been associated with poor outcomes in spindle/sclerosing RMS and rare RMS with classic embryonal histopathology. The prospective analyses of rare fusion genes beyond PAX3/7-FOXO1 will generate new data linked to outcomes and assessment of TP53 mutations and CDK4 amplification may confirm their prognostic value. Pathogenic/likely pathogenic germline variants in TP53 and other cancer predisposition genes should also be assessed. DNA/RNA profiling of tumours at diagnosis/relapse and serial analyses of plasma samples is recommended where possible to validate potential molecular biomarkers, identify new biomarkers and assess how liquid biopsy analyses can have the greatest benefit. Together with the development of new molecularly-derived therapeutic strategies that we review, a synchronised international approach is expected to enhance progress towards improved treatment assignment, management and outcomes for patients with RMS.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Soft Tissue Neoplasms , Adolescent , Child , Consensus , Humans , Molecular Diagnostic Techniques , Neoplasm Recurrence, Local , Prospective Studies , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/therapy , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/therapy , Risk Assessment , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL