Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Proc Natl Acad Sci U S A ; 121(9): e2214756121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38394243

ABSTRACT

Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.


Subject(s)
Mental Disorders , Sleep Wake Disorders , Young Adult , Adolescent , Humans , Mental Disorders/etiology , Mental Disorders/therapy , Sleep/physiology , Circadian Rhythm/physiology , Mental Health , Mood Disorders
2.
Circ Res ; 134(6): 810-832, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38484034

ABSTRACT

Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.


Subject(s)
Cardiovascular Diseases , Hypertension , Adult , Humans , Blood Pressure/physiology , Circadian Rhythm , Heart
3.
Int J Obes (Lond) ; 48(5): 694-701, 2024 May.
Article in English | MEDLINE | ID: mdl-38267484

ABSTRACT

BACKGROUND: While environmental factors play an important role in weight loss effectiveness, genetics may also influence its success. We examined whether a genome-wide polygenic score for BMI was associated with weight loss effectiveness and aimed to identify common genetic variants associated with weight loss. METHODS: Participants in the ONTIME study (n = 1210) followed a uniform, multimodal behavioral weight-loss intervention. We first tested associations between a genome-wide polygenic score for higher BMI and weight loss effectiveness (total weight loss, rate of weight loss, and attrition). We then conducted a genome-wide association study (GWAS) for weight loss in the ONTIME study and performed the largest weight loss meta-analysis with earlier studies (n = 3056). Lastly, we ran exploratory GWAS in the ONTIME study for other weight loss outcomes and related factors. RESULTS: We found that each standard deviation increment in the polygenic score was associated with a decrease in the rate of weight loss (Beta (95% CI) = -0.04 kg per week (-0.06, -0.01); P = 3.7 × 10-03) and with higher attrition after adjusting by treatment duration. No associations reached genome-wide significance in meta-analysis with previous GWAS studies for weight loss. However, associations in the ONTIME study showed effects consistent with published studies for rs545936 (MIR486/NKX6.3/ANK1), a previously noted weight loss locus. In the meta-analysis, each copy of the minor A allele was associated with 0.12 (0.03) kg/m2 higher BMI at week five of treatment (P = 3.9 × 10-06). In the ONTIME study, we also identified two genome-wide significant (P < 5×10-08) loci for the rate of weight loss near genes implicated in lipolysis, body weight, and metabolic regulation: rs146905606 near NFIP1/SPRY4/FGF1; and rs151313458 near LSAMP. CONCLUSION: Our findings are expected to help in developing personalized weight loss approaches based on genetics. CLINICAL TRIAL REGISTRATION: Obesity, Nutrigenetics, Timing, and Mediterranean (ONTIME; clinicaltrials.gov: NCT02829619) study.


Subject(s)
Body Mass Index , Genome-Wide Association Study , Obesity , Weight Loss , Adult , Female , Humans , Male , Middle Aged , Multifactorial Inheritance/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , Weight Loss/genetics
4.
Int J Behav Nutr Phys Act ; 21(1): 51, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698447

ABSTRACT

BACKGROUND: There is a growing population of survivors of colorectal cancer (CRC). Fatigue and insomnia are common symptoms after CRC, negatively influencing health-related quality of life (HRQoL). Besides increasing physical activity and decreasing sedentary behavior, the timing and patterns of physical activity and rest over the 24-h day (i.e. diurnal rest-activity rhythms) could also play a role in alleviating these symptoms and improving HRQoL. We investigated longitudinal associations of the diurnal rest-activity rhythm (RAR) with fatigue, insomnia, and HRQoL in survivors of CRC. METHODS: In a prospective cohort study among survivors of stage I-III CRC, 5 repeated measurements were performed from 6 weeks up to 5 years post-treatment. Parameters of RAR, including mesor, amplitude, acrophase, circadian quotient, dichotomy index, and 24-h autocorrelation coefficient, were assessed by a custom MATLAB program using data from tri-axial accelerometers worn on the upper thigh for 7 consecutive days. Fatigue, insomnia, and HRQoL were measured by validated questionnaires. Confounder-adjusted linear mixed models were applied to analyze longitudinal associations of RAR with fatigue, insomnia, and HRQoL from 6 weeks until 5 years post-treatment. Additionally, intra-individual and inter-individual associations over time were separated. RESULTS: Data were available from 289 survivors of CRC. All RAR parameters except for 24-h autocorrelation increased from 6 weeks to 6 months post-treatment, after which they remained relatively stable. A higher mesor, amplitude, circadian quotient, dichotomy index, and 24-h autocorrelation were statistically significantly associated with less fatigue and better HRQoL over time. A higher amplitude and circadian quotient were associated with lower insomnia. Most of these associations appeared driven by both within-person changes over time and between-person differences in RAR parameters. No significant associations were observed for acrophase. CONCLUSIONS: In the first five years after CRC treatment, adhering to a generally more active (mesor) and consistent (24-h autocorrelation) RAR, with a pronounced peak activity (amplitude) and a marked difference between daytime and nighttime activity (dichotomy index) was found to be associated with lower fatigue, lower insomnia, and a better HRQoL. Future intervention studies are needed to investigate if restoring RAR among survivors of CRC could help to alleviate symptoms of fatigue and insomnia while enhancing their HRQoL. TRIAL REGISTRATION: EnCoRe study NL6904 ( https://www.onderzoekmetmensen.nl/ ).


Subject(s)
Cancer Survivors , Circadian Rhythm , Colorectal Neoplasms , Exercise , Fatigue , Quality of Life , Rest , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Male , Female , Middle Aged , Prospective Studies , Circadian Rhythm/physiology , Cancer Survivors/psychology , Aged , Longitudinal Studies , Surveys and Questionnaires
5.
J Pineal Res ; 76(5): e12965, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860494

ABSTRACT

Melatonin is a pineal hormone that modulates the circadian system and exerts soporific and phase-shifting effects. It is also involved in many other physiological processes, such as those implicated in cardiovascular, endocrine, immune, and metabolic functions. However, the role of melatonin in glucose metabolism remains contradictory, and its action on human adipose tissue (AT) explants has not been demonstrated. We aimed to assess whether melatonin (a pharmacological dose) influences insulin sensitivity in human AT. This will help better understand melatonin administration's effect on glucose metabolism. Abdominal AT (subcutaneous and visceral) biopsies were obtained from 19 participants with severe obesity (age: 42.84 ± 12.48 years; body mass index: 43.14 ± 8.26 kg/m2) who underwent a laparoscopic gastric bypass. AT biopsies were exposed to four different treatments: control (C), insulin alone (I) (10 nM), melatonin alone (M) (5000 pg/mL), and insulin plus melatonin combined (I + M). All four conditions were repeated in both subcutaneous and visceral AT, and all were performed in the morning at 8 a.m. (n = 19) and the evening at 8 p.m. (in a subsample of n = 12). We used western blot analysis to determine insulin signaling (using the pAKT/tAKT ratio). Furthermore, RNAseq analyses were performed to better understand the metabolic pathways involved in the effect of melatonin on insulin signaling. As expected, insulin treatment (I) increased the pAKT/tAKT ratio compared with control (p < .0001). Furthermore, the addition of melatonin (I + M) resulted in a decrease in insulin signaling as compared with insulin alone (I); this effect was significant only during the evening time (not in the morning time). Further, RNAseq analyses in visceral AT during the evening condition (at 8 p.m.) showed that melatonin resulted in a prompt transcriptome response (around 1 h after melatonin addition), particularly by downregulating the insulin signaling pathway. Our results show that melatonin reduces insulin sensitivity in human AT during the evening. These results may partly explain the previous studies showing a decrease in glucose tolerance after oral melatonin administration in the evening or when eating late when endogenous melatonin is present.


Subject(s)
Insulin Resistance , Melatonin , Humans , Melatonin/pharmacology , Insulin Resistance/physiology , Adult , Male , Female , Middle Aged , Insulin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects
6.
J Pineal Res ; 76(5): e12994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39158010

ABSTRACT

Internal circadian phase assessment is increasingly acknowledged as a critical clinical tool for the diagnosis, monitoring, and treatment of circadian rhythm sleep-wake disorders and for investigating circadian timing in other medical disorders. The widespread use of in-laboratory circadian phase assessments in routine practice has been limited, most likely because circadian phase assessment is not required by formal diagnostic nosologies, and is not generally covered by insurance. At-home assessment of salivary dim light melatonin onset (DLMO, a validated circadian phase marker) is an increasingly accepted approach to assess circadian phase. This approach may help meet the increased demand for assessments and has the advantages of lower cost and greater patient convenience. We reviewed the literature describing at-home salivary DLMO assessment methods and identified factors deemed to be important to successful implementation. Here, we provide specific protocol recommendations for conducting at-home salivary DLMO assessments to facilitate a standardized approach for clinical and research purposes. Key factors include control of lighting, sampling rate, and timing, and measures of patient compliance. We include findings from implementation of an optimization algorithm to determine the most efficient number and timing of samples in patients with Delayed Sleep-Wake Phase Disorder. We also provide recommendations for assay methods and interpretation. Providing definitive criteria for each factor, along with detailed instructions for protocol implementation, will enable more widespread adoption of at-home circadian phase assessments as a standardized clinical diagnostic, monitoring, and treatment tool.


Subject(s)
Circadian Rhythm , Melatonin , Saliva , Humans , Melatonin/analysis , Melatonin/metabolism , Saliva/metabolism , Saliva/chemistry , Circadian Rhythm/physiology
8.
Sleep Med Rev ; 75: 101936, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714136

ABSTRACT

We aimed to systematically review and synthesize the available evidence regarding the link between dietary patterns and insomnia symptoms among the general population using observational studies. We reviewed 16,455 references, of which 37 studies met inclusion criteria with a total sample size of 591,223. There was a significant association of the Mediterranean diet (OR: 0.86; 95 % CI, 0.79, 0.93; P < 0.001; I2 = 32.68 %), a high-quality diet (OR: 0.66; 95 % CI, 0.48, 0.90; P = 0.010; I2 = 84.62 %), and an empirically-derived healthy dietary pattern (OR: 0.91; 95 % CI, 0.85, 0.98; P = 0.010; I2 = 57.14 %) with a decreased risk of insomnia symptoms. Moreover, the dietary glycemic index (OR: 1.16; 95 % CI, 1.08, 1.25; P < 0.001; I2 = 0.0 %), the dietary glycemic load (OR: 1.10; 95 % CI, 1.01, 1.20; P = 0.032; I2 = 74.36 %), and an empirically-derived unhealthy dietary pattern (OR: 1.20; 95 % CI, 1.01, 1.42; P = 0.040; I2 = 68.38 %) were linked with a higher risk of insomnia symptoms. Most individual studies were of good quality (NOS) but provided very low certainty of evidence (GRADE). Consistent data reveals that following healthy diets is associated with decreased insomnia symptoms prevalence, while adherence to an unhealthy pattern is associated with an increased prevalence of insomnia symptoms.


Subject(s)
Diet, Mediterranean , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/epidemiology , Glycemic Index , Diet , Dietary Patterns
9.
Environ Pollut ; 344: 123258, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38159634

ABSTRACT

Exposure to light at night (LAN) may influence sleep timing and regularity. Here, we test whether greater light exposure during sleep (LEDS) is bidirectionally associated with greater irregularity in sleep onset timing in a large cohort of older adults in cross-sectional and short-term longitudinal (days) analyses. Light exposure and activity patterns, measured via wrist-worn actigraphy (ActiWatch Spectrum), were analyzed in 1933 participants with 6+ valid days of data in the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 5 Sleep Study. Summary measures of LEDS averaged across nights were evaluated in linear and logistic regression analyses to test the association with standard deviation (SD) in sleep onset timing (continuous variable) and irregular sleep onset timing (SD > 90 min, binary). Night-to-night associations between LEDS and absolute differences in nightly sleep onset timing were also evaluated with distributed lag non-linear models and mixed models. In between-individual linear and logistic models adjusted for demographic, health, and seasonal factors, every 5-lux unit increase in LEDS was associated with a 7.8-min increase in sleep onset SD (ß = 0.13 h, 95%CI:0.09-0.17) and 32% greater odds (OR = 1.32, 95%CI:1.17-1.50) of irregular sleep onset. In within-individual night-to-night mixed model analyses, every 5-lux unit increase in LEDS the night prior was associated with a 2.2-min greater deviation of sleep onset the next night (ß = 0.036 h, p < 0.05). Conversely, every 1-h increase in sleep deviation was associated with a 0.35-lux increase in future LEDS (ß = 0.348 lux, p < 0.05). LEDS was associated with greater irregularity in sleep onset in between-individual analyses and subsequent deviation in sleep timing in within-individual analyses, supporting a role for LEDS in irregular sleep onset timing. Greater deviation in sleep onset was also associated with greater future LEDS, suggesting a bidirectional relationship. Maintaining a dark sleeping environment and preventing LEDS may promote sleep regularity and following a regular sleep schedule may limit LEDS.


Subject(s)
Atherosclerosis , Sleep , Humans , Aged , Cross-Sectional Studies , Atherosclerosis/epidemiology , Circadian Rhythm
10.
Sleep ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995117

ABSTRACT

STUDY OBJECTIVES: Napping is a common habit in many countries. Nevertheless, studies about the chronic effects of napping on obesity are contradictory, and the molecular link between napping and metabolic alterations has yet to be studied. We aim to identify molecular mechanisms in adipose tissue (AT) that may connect napping and abdominal obesity. METHODS: In this cross-sectional study, we extracted the RNA repeatedly across 24h from cultured AT explants and performed RNA sequencing. Circadian rhythms were analyzed using 6 consecutive time points across 24 hours. We also assessed global gene expression in each group (nappers vs. non-nappers). RESULTS: With napping, there was a loss of rhythmicity in 88% of genes that showed circadian rhythmicity among non-nappers, a reduction in rhythm amplitudes of 29%, and significant phase changes from a coherent unimodal acrophase in non-nappers, towards a scattered and bimodal acrophase in nappers. Those genes that lost rhythmicity with napping were mainly involved in pathways of glucose and lipid metabolism, and of the circadian clock. Additionally, we found differential global gene expression between nappers and non-nappers with 34 genes down- and 32 genes up-regulated in nappers. The top up-regulated gene (IER3) and top down-regulated pseudogene (VDAC2P2) in nappers have been previously shown to be involved in inflammation. CONCLUSION: These new findings may have implications for our understanding of napping's effects on obesity and metabolic disorders.

11.
Article in English | MEDLINE | ID: mdl-39073251

ABSTRACT

OBJECTIVE: Time-restricted eating (TRE), a dietary approach that confines food intake to specific time windows, has shown metabolic benefits. However, its impact on body weight loss remains inconclusive. The objective of this study was to investigate the influence of early TRE (eTRE) and delayed TRE (dTRE) on fat mobilization using human adipose tissue (AT) cultures. METHODS: Subcutaneous AT was collected from 21 participants with severe obesity. We assessed fat mobilization by measuring glycerol release in AT culture across four treatment conditions: control, eTRE, dTRE, and 24-h fasting. RESULTS: TRE had a significant impact on lipolysis (glycerol release [mean (SD)] in micromoles per hour per gram: control, 0.05 [0.003]; eTRE, 0.10 [0.006]; dTRE, 0.08 [0.005]; and fasting, 0.17 [0.008]; p < 0.0001). Both eTRE and dTRE increased lipolysis compared with the control group, with eTRE showing higher glycerol mobilization than dTRE during the overall 24-h time window, especially at the nighttime/habitual sleep episode (p < 0.0001). Further analysis of TRE based on fasting duration revealed that, independently of the time window, glycerol release increased with fasting duration (in micromoles per hour per gram: 8 h = 0.08 [0.001]; 12 h = 0.09 [0.008]; and 16 h of fasting = 0.12 [0.011]; p < 0.0001). CONCLUSIONS: This study provides insights into the potential benefits of TRE on fat mobilization and may guide the design of future dietary strategies for weight management and metabolic health.

12.
Sleep ; 47(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38874415

ABSTRACT

STUDY OBJECTIVES: Menopause is associated with nighttime sleep fragmentation, declining estradiol, and impaired cognition. In a model of pharmacologically induced estradiol suppression mimicking menopause, we examined the impact of menopause-pattern sleep fragmentation on daytime neurobehavioral performance and sleepiness in premenopausal women. METHODS: Twenty premenopausal women completed two five-night inpatient studies in the mid-to-late follicular phase (estrogenized) and after pharmacological estradiol suppression (hypo-estrogenized). During each study, participants had an uninterrupted 8-hour sleep opportunity for two nights, followed by three nights where sleep was experimentally fragmented to mimic menopause-pattern sleep disturbance, and during which the sleep opportunity was extended to prevent shortening of the sleep duration. Neurobehavioral performance and subjective sleepiness were measured using the Psychomotor Vigilance Task and Karolinska Sleepiness Scale (KSS). RESULTS: Compared to unfragmented sleep, sleep fragmentation increased attentional lapses (+ 0.6 lapses, p < .05), slowed reaction time (+ 9.4 milliseconds, p < .01), and increased daytime sleepiness (+ 0.5 KSS score, p < .001). Estradiol suppression increased attentional lapses (+ 0.8; p < .001) and reaction time (+ 12.3, p < .01) but did not significantly affect daytime sleepiness. The effect of sleep fragmentation on neurobehavioral performance differed by estradiol state, such that the adverse effects of sleep fragmentation on attentional lapses (+ 0.9, trend p = .06) and reaction time (+ 15, p < .05) were observed only when estrogenized. CONCLUSIONS: Menopause-pattern sleep fragmentation and estradiol suppression worsened neurobehavioral performance and daytime sleepiness, even while sleep duration was not reduced. The adverse effects of sleep fragmentation in the context of an adequate sleep duration highlight the importance of sleep continuity as a vital aspect of good sleep health.


Subject(s)
Attention , Estradiol , Premenopause , Psychomotor Performance , Sleep Deprivation , Humans , Female , Estradiol/blood , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Adult , Premenopause/physiology , Attention/drug effects , Attention/physiology , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Reaction Time/drug effects , Reaction Time/physiology , Sleepiness , Young Adult , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL