Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 615(7950): 117-126, 2023 03.
Article in English | MEDLINE | ID: mdl-36859578

ABSTRACT

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.


Subject(s)
Archaeology , Genome, Human , Genomics , Human Genetics , Hunting , Paleontology , Humans , Europe/ethnology , Gene Pool , History, Ancient , Genome, Human/genetics
2.
Proc Natl Acad Sci U S A ; 121(27): e2406734121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38913897

ABSTRACT

The Merovingian period (5th to 8th cc AD) was a time of demographic, socioeconomic, cultural, and political realignment in Western Europe. Here, we report the whole-genome shotgun sequence data of 30 human skeletal remains from a coastal Late Merovingian site of Koksijde (675 to 750 AD), alongside 18 remains from two Early to Late Medieval sites in present-day Flanders, Belgium. We find two distinct ancestries, one shared with Early Medieval England and the Netherlands, while the other, minor component, reflecting likely continental Gaulish ancestry. Kinship analyses identified no large pedigrees characteristic to elite burials revealing instead a high modularity of distant relationships among individuals of the main ancestry group. In contrast, individuals with >90% Gaulish ancestry had no kinship links among sampled individuals. Evidence for population structure and major differences in the extent of Gaulish ancestry in the main group, including in a mother-daughter pair, suggests ongoing admixture in the community at the time of their burial. The isotopic and genetic evidence combined supports a model by which the burials, representing an established coastal nonelite community, had incorporated migrants from inland populations. The main group of burials at Koksijde shows an abundance of >5 cM long shared allelic intervals with the High Medieval site nearby, implying long-term continuity and suggesting that similarly to Britain, the Early Medieval ancestry shifts left a significant and long-lasting impact on the genetic makeup of the Flemish population. We find substantial allele frequency differences between the two ancestry groups in pigmentation and diet-associated variants, including those linked with lactase persistence, likely reflecting ancestry change rather than local adaptation.


Subject(s)
Pedigree , Humans , History, Medieval , Belgium , Burial/history , Genetics, Population/methods , Female , Male , DNA, Ancient/analysis , England , Human Migration , Archaeology , Netherlands , Genome, Human
3.
Am J Hum Genet ; 108(9): 1792-1806, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34411538

ABSTRACT

The Finnish population is a unique example of a genetic isolate affected by a recent founder event. Previous studies have suggested that the ancestors of Finnic-speaking Finns and Estonians reached the circum-Baltic region by the 1st millennium BC. However, high linguistic similarity points to a more recent split of their languages. To study genetic connectedness between Finns and Estonians directly, we first assessed the efficacy of imputation of low-coverage ancient genomes by sequencing a medieval Estonian genome to high depth (23×) and evaluated the performance of its down-sampled replicas. We find that ancient genomes imputed from >0.1× coverage can be reliably used in principal-component analyses without projection. By searching for long shared allele intervals (LSAIs; similar to identity-by-descent segments) in unphased data for >143,000 present-day Estonians, 99 Finns, and 14 imputed ancient genomes from Estonia, we find unexpectedly high levels of individual connectedness between Estonians and Finns for the last eight centuries in contrast to their clear differentiation by allele frequencies. High levels of sharing of these segments between Estonians and Finns predate the demographic expansion and late settlement process of Finland. One plausible source of this extensive sharing is the 8th-10th centuries AD migration event from North Estonia to Finland that has been proposed to explain uniquely shared linguistic features between the Finnish language and the northern dialect of Estonian and shared Christianity-related loanwords from Slavic. These results suggest that LSAI detection provides a computationally tractable way to detect fine-scale structure in large cohorts.


Subject(s)
Alleles , DNA, Ancient/analysis , Genome, Human , Human Migration/history , Pedigree , Estonia , Female , Finland , Gene Frequency , Genealogy and Heraldry , High-Throughput Nucleotide Sequencing , History, 21st Century , History, Ancient , History, Medieval , Humans , Language/history , Male
5.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35038748

ABSTRACT

The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula.


Subject(s)
DNA, Mitochondrial , DNA, Mitochondrial/genetics , Europe , Italy
6.
Am J Hum Genet ; 107(1): 149-157, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32470374

ABSTRACT

The Iron and Classical Ages in the Near East were marked by population expansions carrying cultural transformations that shaped human history, but the genetic impact of these events on the people who lived through them is little-known. Here, we sequenced the whole genomes of 19 individuals who each lived during one of four time periods between 800 BCE and 200 CE in Beirut on the Eastern Mediterranean coast at the center of the ancient world's great civilizations. We combined these data with published data to traverse eight archaeological periods and observed any genetic changes as they arose. During the Iron Age (∼1000 BCE), people with Anatolian and South-East European ancestry admixed with people in the Near East. The region was then conquered by the Persians (539 BCE), who facilitated movement exemplified in Beirut by an ancient family with Egyptian-Lebanese admixed members. But the genetic impact at a population level does not appear until the time of Alexander the Great (beginning 330 BCE), when a fusion of Asian and Near Easterner ancestry can be seen, paralleling the cultural fusion that appears in the archaeological records from this period. The Romans then conquered the region (31 BCE) but had little genetic impact over their 600 years of rule. Finally, during the Ottoman rule (beginning 1516 CE), Caucasus-related ancestry penetrated the Near East. Thus, in the past 4,000 years, three limited admixture events detectably impacted the population, complementing the historical records of this culturally complex region dominated by the elite with genetic insights from the general population.


Subject(s)
DNA/genetics , Genetics, Population/history , Egypt , Ethnicity/genetics , Ethnicity/history , Genome, Human/genetics , Haplotypes/genetics , History, Ancient , Human Migration/history , Humans , Middle East
7.
Am J Hum Genet ; 104(5): 977-984, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31006515

ABSTRACT

During the medieval period, hundreds of thousands of Europeans migrated to the Near East to take part in the Crusades, and many of them settled in the newly established Christian states along the Eastern Mediterranean coast. Here, we present a genetic snapshot of these events and their aftermath by sequencing the whole genomes of 13 individuals who lived in what is today known as Lebanon between the 3rd and 13th centuries CE. These include nine individuals from the "Crusaders' pit" in Sidon, a mass burial in South Lebanon identified from the archaeology as the grave of Crusaders killed during a battle in the 13th century CE. We show that all of the Crusaders' pit individuals were males; some were Western Europeans from diverse origins, some were locals (genetically indistinguishable from present-day Lebanese), and two individuals were a mixture of European and Near Eastern ancestries, providing direct evidence that the Crusaders admixed with the local population. However, these mixtures appear to have had limited genetic consequences since signals of admixture with Europeans are not significant in any Lebanese group today-in particular, Lebanese Christians are today genetically similar to local people who lived during the Roman period which preceded the Crusades by more than four centuries.


Subject(s)
Ethnicity/genetics , Ethnicity/history , Gene Flow , Genetics, Population , Genome, Human , White People/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Female , History, Ancient , Humans , Lebanon/ethnology , Male
8.
Nature ; 538(7624): 238-242, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27654910

ABSTRACT

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


Subject(s)
Genome, Human/genetics , Genomics , Human Migration/history , Racial Groups/genetics , Africa/ethnology , Animals , Asia , Datasets as Topic , Estonia , Europe , Fossils , Gene Flow , Genetics, Population , Heterozygote , History, Ancient , Humans , Native Hawaiian or Other Pacific Islander/genetics , Neanderthals/genetics , New Guinea , Population Dynamics
9.
Proc Natl Acad Sci U S A ; 116(25): 12363-12372, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31164419

ABSTRACT

The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium's spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic.


Subject(s)
Disease Outbreaks/history , Genome, Bacterial , Plague/microbiology , Yersinia pestis/genetics , Europe/epidemiology , History, Medieval , Humans , Plague/epidemiology , Plague/history , Yersinia pestis/pathogenicity
10.
BMC Biol ; 19(1): 220, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34610848

ABSTRACT

BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.


Subject(s)
Mycobacterium leprae , Europe , Genome, Bacterial/genetics , Humans , Leprosy/genetics , Mycobacterium leprae/genetics , Population Dynamics
11.
Am J Phys Anthropol ; 168(2): 340-351, 2019 02.
Article in English | MEDLINE | ID: mdl-30575013

ABSTRACT

OBJECTIVES: In tests on known individuals macroscopic sex estimation has between 70% and 98% accuracy. However, materials used to create and test these methods are overwhelming modern. As sexual dimorphism is dependent on multiple factors, it is unclear whether macroscopic methods have similar success on earlier materials, which differ in lifestyle and nutrition. This research aims to assess the accuracy of commonly used traits by comparing macroscopic sex estimates to genetic sex in medieval English material. MATERIALS AND METHODS: Sixty-six individuals from the 13th to 16th century Hospital of St John the Evangelist, Cambridge, were assessed. Genetic sex was determined using a shotgun approach. Eighteen skeletal traits were examined, and macroscopic sex estimates were derived from the os coxae, skull, and os coxae and skull combined. Each trait was tested for accuracy to explore sex estimates errors. RESULTS: The combined estimate (97.7%) outperformed the os coxae only estimate (95.7%), which outperformed the skull only estimate (90.4%). Accuracy rates for individual traits varied: Phenice traits were most accurate, whereas supraorbital margins, frontal bossing, and gonial flaring were least accurate. The preauricular sulcus and arc compose showed a bias in accuracy between sexes. DISCUSSION: Macroscopic sex estimates are accurate when applied to medieval material from Cambridge. However, low trait accuracy rates may relate to differences in dimorphism between the method derivative sample and the St John's collection. Given the sex bias, the preauricular sulcus, frontal bossing, and arc compose should be reconsidered as appropriate traits for sex estimation for this group.


Subject(s)
Genetic Testing/statistics & numerical data , Pelvic Bones/anatomy & histology , Sex Determination by Skeleton/statistics & numerical data , Skull/anatomy & histology , Adolescent , Adult , Anthropology, Physical , Archaeology , Female , History, 15th Century , History, 16th Century , History, Medieval , Humans , Male , Middle Aged , Sex Determination by Skeleton/standards , Young Adult
12.
Ann Hum Biol ; 46(2): 145-149, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31184205

ABSTRACT

In the fourth millennium BCE a cultural phenomenon of monumental burial structures spread along the Atlantic façade. Megalithic burials have been targeted for aDNA analyses, but a gap remains in East Anglia, where Neolithic structures were generally earthen or timber. An early Neolithic (3762-3648 cal. BCE) burial monument at the site of Trumpington Meadows, Cambridgeshire, UK, contained the partially articulated remains of at least three individuals. To determine whether this monument fits a pattern present in megalithic burials regarding sex bias, kinship, diet and relationship to modern populations, teeth and ribs were analysed for DNA and carbon and nitrogen isotopic values, respectively. Whole ancient genomes were sequenced from two individuals to a mean genomic coverage of 1.6 and 1.2X and genotypes imputed. Results show that they were brothers from a small population genetically and isotopically similar to previously published British Neolithic individuals, with a level of genome-wide homozygosity consistent with a small island population sourced from continental Europe, but bearing no signs of recent inbreeding. The first Neolithic whole genomes from a monumental burial in East Anglia confirm that this region was connected with the larger pattern of Neolithic megaliths in the British Isles and the Atlantic façade.


Subject(s)
Burial/history , DNA, Ancient/analysis , DNA, Mitochondrial/analysis , Archaeology , England , History, Ancient , Humans , Male , Whole Genome Sequencing
13.
Sci Rep ; 14(1): 1028, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200208

ABSTRACT

Following the development of modern genome sequencing technologies, the investigation of museum osteological finds is increasingly informative and popular. Viable protocols to help preserve these collections from exceedingly invasive analyses, would allow greater access to the specimens for scientific research. The main aim of this work is to survey skeletal tissues, specifically petrous bones and roots of teeth, using infrared spectroscopy as a prescreening method to assess the bone quality for molecular analyses. This approach could overcome the major problem of identifying useful genetic material in archaeological bone collections without resorting to demanding, time consuming and expensive laboratory studies. A minimally invasive sampling of archaeological bones was developed and bone structural and compositional changes were examined, linking isotopic and genetic data to infrared spectra. The predictive model based on Infrared parameters is effective in determining the occurrence of ancient DNA (aDNA); however, the quality/quantity of aDNA cannot be determined because of the influence of environmental and local factors experienced by the examined bones during the burial period.


Subject(s)
Archaeology , Burial , Humans , Spectrophotometry, Infrared , Chromosome Mapping , DNA, Ancient , Isotopes
14.
Sci Adv ; 10(3): eadi5903, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38232165

ABSTRACT

The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.


Subject(s)
Plague , Humans , Plague/genetics , Plague/history , Plague/microbiology , History, Medieval
15.
Genome Biol Evol ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36930529

ABSTRACT

Studies of ancient DNA have transformed our understanding of human evolution. Paleogenomics can also reveal historic and prehistoric agents of disease, including endemic, epidemic, and pandemic pathogens. Viruses-and in particular those with single- or double-stranded DNA genomes-are an important part of the paleogenomic revolution, preserving within some remains or environmental samples for tens of thousands of years. The results of these studies capture the public imagination, as well as giving scientists a unique perspective on some of the more slowly evolving viruses which cause disease. In this review, we revisit the first studies of historical virus genetic material in the 1990s, through to the genomic revolution of recent years. We look at how paleogenomics works for viral pathogens, such as the need for careful precautions against modern contamination and robust computational pipelines to identify and analyze authenticated viral sequences. We discuss the insights into virus evolution which have been gained through paleogenomics, concentrating on three DNA viruses in particular: parvovirus B19, herpes simplex virus 1, and smallpox. As we consider recent worldwide transmission of monkeypox and synthetic biology tools that allow the potential reconstruction of extinct viruses, we show that studying historical and ancient virus evolution has never been more topical.


Subject(s)
Genomics , Viruses , Humans , Genomics/methods , DNA, Ancient , Paleontology , DNA , Viruses/genetics
16.
Metabolites ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37233629

ABSTRACT

Metabolomic approaches, such as in clinical applications of living individuals, have shown potential use for solving questions regarding the past when applied to archaeological material. Here, we study for the first time the potential of this Omic approach as applied to metabolites extracted from archaeological human dentin. Dentin obtained from micro sampling the dental pulp of teeth of victims and non-victims of Yersinia pestis (plague) from a 6th century Cambridgeshire site are used to evaluate the potential use of such unique material for untargeted metabolomic studies on disease state through liquid chromatography hyphenated to high-resolution mass spectrometry (LC-HRMS). Results show that small molecules of both likely endogenous and exogenous sources are preserved for a range of polar and less polar/apolar metabolites in archaeological dentin; however, untargeted metabolomic profiles show no clear differentiation between healthy and infected individuals in the small sample analysed (n = 20). This study discusses the potential of dentin as a source of small molecules for metabolomic assays and highlights: (1) the need for follow up research to optimise sampling protocols, (2) the requirements of studies with larger sample numbers and (3) the necessity of more databases to amplify the positive results achievable with this Omic technique in the archaeological sciences.

17.
Genome Biol ; 23(1): 22, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35109894

ABSTRACT

BACKGROUND: The human pathogen Haemophilus influenzae was the main cause of bacterial meningitis in children and a major cause of worldwide infant mortality before the introduction of a vaccine in the 1980s. Although the occurrence of serotype b (Hib), the most virulent type of H. influenzae, has since decreased, reports of infections with other serotypes and non-typeable strains are on the rise. While non-typeable strains have been studied in-depth, very little is known of the pathogen's evolutionary history, and no genomes dating prior to 1940 were available. RESULTS: We describe a Hib genome isolated from a 6-year-old Anglo-Saxon plague victim, from approximately 540 to 550 CE, Edix Hill, England, showing signs of invasive infection on its skeleton. We find that the genome clusters in phylogenetic division II with Hib strain NCTC8468, which also caused invasive disease. While the virulence profile of our genome was distinct, its genomic similarity to NCTC8468 points to mostly clonal evolution of the clade since the 6th century. We also reconstruct a partial Yersinia pestis genome, which is likely identical to a published first plague pandemic genome of Edix Hill. CONCLUSIONS: Our study presents the earliest genomic evidence for H. influenzae, points to the potential presence of larger genomic diversity in the phylogenetic division II serotype b clade in the past, and allows the first insights into the evolutionary history of this major human pathogen. The identification of both plague and Hib opens questions on the effect of plague in immunocompromised individuals already affected by infectious diseases.


Subject(s)
Haemophilus Vaccines , Plague , Child , Haemophilus influenzae/genetics , Humans , Infant , Phylogeny , Serogroup
18.
Sci Adv ; 8(30): eabo4435, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35895820

ABSTRACT

Human herpes simplex virus 1 (HSV-1), a life-long infection spread by oral contact, infects a majority of adults globally. Phylogeographic clustering of sampled diversity into European, pan-Eurasian, and African groups has suggested the virus codiverged with human migrations out of Africa, although a much younger origin has also been proposed. We present three full ancient European HSV-1 genomes and one partial genome, dating from the 3rd to 17th century CE, sequenced to up to 9.5× with paired human genomes up to 10.16×. Considering a dataset of modern and ancient genomes, we apply phylogenetic methods to estimate the age of sampled modern Eurasian HSV-1 diversity to 4.68 (3.87 to 5.65) ka. Extrapolation of estimated rates to a global dataset points to the age of extant sampled HSV-1 as 5.29 (4.60 to 6.12) ka, suggesting HSV-1 lineage replacement coinciding with the late Neolithic period and following Bronze Age migrations.

19.
Curr Biol ; 31(12): 2576-2591.e12, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33974848

ABSTRACT

Across Europe, the genetics of the Chalcolithic/Bronze Age transition is increasingly characterized in terms of an influx of Steppe-related ancestry. The effect of this major shift on the genetic structure of populations in the Italian Peninsula remains underexplored. Here, genome-wide shotgun data for 22 individuals from commingled cave and single burials in Northeastern and Central Italy dated between 3200 and 1500 BCE provide the first genomic characterization of Bronze Age individuals (n = 8; 0.001-1.2× coverage) from the central Italian Peninsula, filling a gap in the literature between 1950 and 1500 BCE. Our study confirms a diversity of ancestry components during the Chalcolithic and the arrival of Steppe-related ancestry in the central Italian Peninsula as early as 1600 BCE, with this ancestry component increasing through time. We detect close patrilineal kinship in the burial patterns of Chalcolithic commingled cave burials and a shift away from this in the Bronze Age (2200-900 BCE) along with lowered runs of homozygosity, which may reflect larger changes in population structure. Finally, we find no evidence that the arrival of Steppe-related ancestry in Central Italy directly led to changes in frequency of 115 phenotypes present in the dataset, rather that the post-Roman Imperial period had a stronger influence, particularly on the frequency of variants associated with protection against Hansen's disease (leprosy). Our study provides a closer look at local dynamics of demography and phenotypic shifts as they occurred as part of a broader phenomenon of widespread admixture during the Chalcolithic/Bronze Age transition.


Subject(s)
DNA, Ancient , Genome, Human/genetics , Human Migration/history , Datasets as Topic , Genetics, Population , Genomics , History, Ancient , Humans , Italy , Leprosy/genetics , Phenotype
20.
Curr Biol ; 31(11): 2484-2493.e7, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33887180

ABSTRACT

Before the end of the Last Glacial Maximum (LGM, ∼16.5 ka ago)1 set in motion major shifts in human culture and population structure,2 a consistent change in lithic technology, material culture, settlement pattern, and adaptive strategies is recorded in Southern Europe at ∼18-17 ka ago. In this time frame, the landscape of Northeastern Italy changed considerably, and the retreat of glaciers allowed hunter-gatherers to gradually recolonize the Alps.3-6 Change within this renewed cultural frame (i.e., during the Late Epigravettian phase) is currently associated with migrations favored by warmer climate linked to the Bølling-Allerød onset (14.7 ka ago),7-11 which replaced earlier genetic lineages with ancestry found in an individual who lived ∼14 ka ago at Riparo Villabruna, Italy, and shared among different contexts (Villabruna Cluster).9 Nevertheless, these dynamics and their chronology are still far from being disentangled due to fragmentary evidence for long-distance interactions across Europe.12 Here, we generate new genomic data from a human mandible uncovered at Riparo Tagliente (Veneto, Italy), which we directly dated to 16,980-16,510 cal BP (2σ). This individual, affected by focal osseous dysplasia, is genetically affine to the Villabruna Cluster. Our results therefore backdate by at least 3 ka the diffusion in Southern Europe of a genetic component linked to Balkan/Anatolian refugia, previously believed to have spread during the later Bølling/Allerød event. In light of the new genetic evidence, this population replacement chronologically coincides with the very emergence of major cultural transitions in Southern and Western Europe.


Subject(s)
Human Migration , Ice Cover , Climate , Europe , Humans , Occupations
SELECTION OF CITATIONS
SEARCH DETAIL