Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37913894

ABSTRACT

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Mitogen-Activated Protein Kinases/metabolism , Smad3 Protein/metabolism
2.
Nat Methods ; 19(7): 803-811, 2022 07.
Article in English | MEDLINE | ID: mdl-35710609

ABSTRACT

The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.


Subject(s)
Arabidopsis , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Arabidopsis/genetics , Carcinoma, Pancreatic Ductal/metabolism , Mass Spectrometry , Mice , Pancreatic Neoplasms/genetics , Proteome/analysis
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197278

ABSTRACT

Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFß/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.


Subject(s)
Apoptosis/genetics , Carcinoma, Pancreatic Ductal/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Synthetic Lethal Mutations , Carcinoma, Pancreatic Ductal/pathology , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Humans , Pancreatic Neoplasms/pathology , Promoter Regions, Genetic , Up-Regulation
4.
Cancer Metastasis Rev ; 42(4): 1113-1131, 2023 12.
Article in English | MEDLINE | ID: mdl-37659057

ABSTRACT

Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles. Interfering with epigenetic reprogramming can potentially control the adaptive processes responsible for metastatic progression and therapy resistance, thereby enhancing treatment responses and preventing recurrence. This review will focus on the relevance of histone-modifying enzymes in pancreatic cancer, specifically on their impact on the metastatic cascade. Additionally, it will also provide a brief update on the current clinical developments in epigenetic therapies.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Epigenesis, Genetic
5.
EMBO J ; 39(9): e104759, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32236961

ABSTRACT

Epithelial differentiation of normal and tumor cells is orchestrated by lineage-determining transcriptional regulatory networks that enforce cell identity. Recent research by Kalisz et al (2020) in the EMBO Journal elucidates the molecular mechanisms by which a transcriptional differentiation program governed by HNF1A and KDM6A maintains acinar differentiation and the epithelial identity of pancreatic ductal adenocarcinoma (PDAC). Loss of function of either transcriptional regulator induces tumor progression to a poorly differentiated and highly aggressive PDAC subtype with a squamous transcriptome and poor prognosis.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Acinar Cells , Cell Differentiation , Hepatocyte Nuclear Factor 1-alpha , Histone Demethylases , Humans
6.
Nature ; 554(7690): 62-68, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29364867

ABSTRACT

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfß-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Evolution, Molecular , Gene Dosage , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Adaptor Proteins, Signal Transducing/genetics , Alleles , Animals , Carcinogenesis/genetics , Cell Cycle Proteins , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Progression , Female , Genes, myc , Genes, p53 , Humans , Male , Mice , Mutation , NF-kappa B p52 Subunit/genetics , Neoplasm Metastasis/genetics , Nuclear Proteins/genetics , Phenotype , Phosphoproteins/genetics , Transcription Factors/genetics , Transcriptome/genetics , Transforming Growth Factor beta1/genetics , YAP-Signaling Proteins
7.
Cell Biol Toxicol ; 39(5): 2401-2419, 2023 10.
Article in English | MEDLINE | ID: mdl-35608750

ABSTRACT

The epigenetic modifier histone deacetylase-2 (HDAC2) is frequently dysregulated in colon cancer cells. Microsatellite instability (MSI), an unfaithful replication of DNA at nucleotide repeats, occurs in about 15% of human colon tumors. MSI promotes a genetic frameshift and consequently a loss of HDAC2 in up to 43% of these tumors. We show that long-term and short-term cultures of colorectal cancers with MSI contain subpopulations of cells lacking HDAC2. These can be isolated as single cell-derived, proliferating populations. Xenografted patient-derived colon cancer tissues with MSI also show variable patterns of HDAC2 expression in mice. HDAC2-positive and HDAC2-negative RKO cells respond similarly to pharmacological inhibitors of the class I HDACs HDAC1/HDAC2/HDAC3. In contrast to this similarity, HDAC2-negative and HDAC2-positive RKO cells undergo differential cell cycle arrest and apoptosis induction in response to the frequently used chemotherapeutic 5-fluorouracil, which becomes incorporated into and damages RNA and DNA. 5-fluorouracil causes an enrichment of HDAC2-negative RKO cells in vitro and in a subset of primary colorectal tumors in mice. 5-fluorouracil induces the phosphorylation of KAP1, a target of the checkpoint kinase ataxia-telangiectasia mutated (ATM), stronger in HDAC2-negative cells than in their HDAC2-positive counterparts. Pharmacological inhibition of ATM sensitizes RKO cells to cytotoxic effects of 5-fluorouracil. These findings demonstrate that HDAC2 and ATM modulate the responses of colorectal cancer cells towards 5-FU.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Colonic Neoplasms , Colorectal Neoplasms , Histone Deacetylase 2 , Animals , Humans , Mice , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA , Epigenesis, Genetic , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Microsatellite Instability , Microsatellite Repeats
8.
Cell Mol Life Sci ; 80(1): 12, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36534167

ABSTRACT

Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Proto-Oncogene Proteins c-fos , Animals , Mice , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins c-fos/metabolism , Pancreatic Neoplasms
9.
Gastroenterology ; 161(3): 785-791, 2021 09.
Article in English | MEDLINE | ID: mdl-34089734

ABSTRACT

Pancreatic ductal adenocarcinoma remains a major challenge in cancer medicine. Given the increase in incidence and mortality, interdisciplinary research is necessary to translate basic knowledge into therapeutic strategies improving the outcome of patients. On the 4th and 5th of February 2021, three German pancreatic cancer research centers, the Clinical Research Unit 5002 from Göttingen, the Collaborative Research Center 1321 from Munich, and Clinical Research Unit 325 from Marburg organized the 1st Virtual Göttingen-Munich-Marburg Pancreatic Cancer Meeting in order to foster scientific exchange. This report summarizes current research and proceedings presented during that meeting.


Subject(s)
Biomedical Research/trends , Pancreatic Neoplasms , Animals , Biomarkers, Tumor/genetics , COVID-19 , Cell Lineage , Diffusion of Innovation , Genetic Predisposition to Disease , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Tumor Microenvironment , Videoconferencing
10.
Gastroenterology ; 160(1): 346-361.e24, 2021 01.
Article in English | MEDLINE | ID: mdl-33007300

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS: To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS: Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS: Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.


Subject(s)
Cancer-Associated Fibroblasts/physiology , Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/pathology , Homeodomain Proteins/physiology , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/pathology , Animals , Cell Plasticity/physiology , Disease Models, Animal , Mice
11.
Biol Chem ; 403(8-9): 869-890, 2022 07 26.
Article in English | MEDLINE | ID: mdl-34450690

ABSTRACT

To improve management of head and neck squamous cell carcinoma patients, we need to increase our understanding of carcinogenesis, to identify biomarkers, and drug targets. This study aimed to identify novel biomarkers by providing transcriptomics profiles of matched primary tumors, lymph node metastasis, and non-malignant tissue of 20 HNSCC patients as well as by bioinformatic analyses of a TCGA HNSCC cohort, comprising 554 patients. We provide cancer cell signaling networks differentially expressed in tumors versus metastases, such as mesenchymal-epithelial transition, and structural integrity networks. As a proof of principle study, we exploited the data sets and performed functional analyses of a novel cytokeratin, cytokeratin24 (cKRT24), which had not been described as biomarker for tumors before. Survival analysis revealed that low cKRT24 expression correlated with poor overall survival in HNSCC. Experimentally, downregulation of cKRT24 in primary tumors, metastases, and HNSCC cell lines was verified on mRNA and protein level. Cloning and ectopic overexpression of cKRT24 not only affected viability and growth of HNSSC cell lines, but also inhibited tumor growth in murine xenograft studies. We conclude that cKRT24 functions as a tumor suppressor in HNSCC, and may serve as an additional prognostic biomarker and novel target to support current HNSCC treatments.


Subject(s)
Genes, Tumor Suppressor , Head and Neck Neoplasms , Keratins, Type I , Squamous Cell Carcinoma of Head and Neck , Animals , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , Keratins, Type I/genetics , Mice , Squamous Cell Carcinoma of Head and Neck/genetics
12.
Bioorg Chem ; 119: 105505, 2022 02.
Article in English | MEDLINE | ID: mdl-34838332

ABSTRACT

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Gastrointestinal Neoplasms/drug therapy , Thalidomide/pharmacology , Thiazoles/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Humans , Molecular Structure , Structure-Activity Relationship , Thalidomide/chemical synthesis , Thalidomide/chemistry , Thiazoles/chemical synthesis , Thiazoles/chemistry , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/metabolism
13.
Mol Cell Proteomics ; 19(10): 1649-1663, 2020 10.
Article in English | MEDLINE | ID: mdl-32651227

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.


Subject(s)
Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphoproteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proteomics , Radiation Tolerance , Actins/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Mice , Radiation Tolerance/drug effects , Reproducibility of Results , Signal Transduction/drug effects , Substrate Specificity/drug effects
14.
Br J Cancer ; 124(3): 531-538, 2021 02.
Article in English | MEDLINE | ID: mdl-33071285

ABSTRACT

An urgent medical need to develop novel treatment strategies for patients with pancreatic ductal adenocarcinoma (PDAC) exists. However, despite various efforts in the histopathological and molecular subtyping of PDAC, novel targeted or specific therapies have not been established. Posttranslational modifications (PTMs) with ubiquitin-like proteins, including small ubiquitin-like modifiers (SUMOs), mediate numerous processes that can contribute to the fitness and survival of cancer cells. The contribution of SUMOylation to transcriptional control, DNA repair pathways, mitotic progression, and oncogenic signalling has been described. Here we review functions of the SUMO pathway in PDAC, with a special focus on its connection to an aggressive subtype of the disease characterised by high MYC activity, and discuss SUMOylation inhibitors under development for precise PDAC therapies.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-myc/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Survival/physiology , Cysteine Endopeptidases/drug effects , Cysteine Endopeptidases/metabolism , DNA Repair/physiology , Enzyme Inhibitors/pharmacology , Humans , Mitosis/physiology , Pancreatic Neoplasms/pathology , Poly-ADP-Ribose Binding Proteins/metabolism , Promyelocytic Leukemia Protein/metabolism , Protein Inhibitors of Activated STAT/metabolism , Proto-Oncogene Proteins c-myc/genetics , SUMO-1 Protein/antagonists & inhibitors , SUMO-1 Protein/metabolism , Signal Transduction/physiology , Small Ubiquitin-Related Modifier Proteins/antagonists & inhibitors , Sumoylation/drug effects , Synthetic Lethal Mutations , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitins/antagonists & inhibitors , Ubiquitins/metabolism
15.
Pancreatology ; 21(5): 912-919, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33824054

ABSTRACT

BACKGROUND: Oncogenic Kras initiates and drives carcinogenesis in the pancreas by complex signaling networks, including activation of the NFκB pathway. Although recent evidence has shown that oncogenic gains in Nfκb2 collaborate with Kras in the carcinogenesis, no data at the level of genetics for the contribution of Nfκb2 is available so far. METHODS: We used Nfkb2 knock-out mice to decipher the role of the gene in Kras-driven carcinogenesis in vivo. RESULTS: We show that the Nfkb2 gene is needed for cancer initiation and progression in KrasG12D-driven models and this requirement of Nfkb2 is mechanistically connected to proliferative pathways. In contrast, Nfκb2 is dispensable in aggressive pancreatic ductal adenocarcinoma (PDAC) models relying on the simultaneous expression of the Kras oncogene and the mutated tumor suppressor p53. CONCLUSIONS: Our data add to the understanding of context-dependent requirements of oncogenic Kras signaling during pancreatic carcinogenesis.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/genetics , Genes, ras , Mice , Pancreas , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
16.
Bioorg Med Chem ; 30: 115898, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33388594

ABSTRACT

The spread of antibiotic resistance within the ESKAPE group of human pathogenic bacteria poses severe challenges in the treatment of infections and maintenance of safe hospital environments. This motivates efforts to validate novel target proteins within these species that could be pursued as potential targets for antibiotic development. Genetic data suggest that the enzyme FabG, which is part of the bacterial fatty acid biosynthetic system FAS-II, is essential in several ESKAPE pathogens. FabG catalyzes the NADPH dependent reduction of 3-keto-acyl-ACP during fatty acid elongation, thus enabling lipid supply for production and maintenance of the cell envelope. Here we report on small-molecule screening on the FabG enzymes from A. baumannii and S. typhimurium to identify a set of µM inhibitors, with the most potent representative (1) demonstrating activity against six FabG-orthologues. A co-crystal structure with FabG from A. baumannii (PDB:6T65) confirms inhibitor binding at an allosteric site located in the subunit interface, as previously demonstrated for other sub-µM inhibitors of FabG from P. aeruginosa. We show that inhibitor binding distorts the oligomerization interface in the FabG tetramer and displaces crucial residues involved in the interaction with the co-substrate NADPH. These observations suggest a conserved allosteric site across the FabG family, which can be potentially targeted for interference with fatty acid biosynthesis in clinically relevant ESKAPE pathogens.


Subject(s)
Acinetobacter baumannii/enzymology , Alcohol Oxidoreductases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pseudomonas aeruginosa/enzymology , Salmonella typhimurium/enzymology , Alcohol Oxidoreductases/metabolism , Binding Sites/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship
17.
Genes Dev ; 27(3): 288-300, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23355395

ABSTRACT

Pancreatic exocrine cell plasticity can be observed during development, pancreatitis with subsequent regeneration, and also transformation. For example, acinar-ductal metaplasia (ADM) occurs during acute pancreatitis and might be viewed as a prelude to pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) development. To elucidate regulatory processes that overlap ductal development, ADM, and the progression of normal cells to PanIN lesions, we undertook a systematic approach to identify the Prrx1 paired homeodomain Prrx1 transcriptional factor as a highly regulated gene in these processes. Prrx1 annotates a subset of pancreatic ductal epithelial cells in Prrx1creER(T2)-IRES-GFP mice. Furthermore, sorted Prrx1(+) cells have the capacity to self-renew and expand during chronic pancreatitis. The two isoforms, Prrx1a and Prrx1b, regulate migration and invasion, respectively, in pancreatic cancer cells. In addition, Prrx1b is enriched in circulating pancreatic cells (Pdx1cre;LSL-Kras(G12D/+);p53(fl/+);R26YFP). Intriguingly, the Prrx1b isoform, which is also induced in ADM, binds the Sox9 promoter and positively regulates Sox9 expression. This suggests a new hierarchical scheme whereby a Prrx1-Sox9 axis may influence the emergence of acinar-ductal metaplasia and regeneration. Furthermore, our data provide a possible explanation of why pancreatic cancer is skewed toward a ductal fate.


Subject(s)
Homeodomain Proteins/metabolism , Pancreas/pathology , Pancreas/physiology , Pancreatic Neoplasms/physiopathology , Regeneration/physiology , Animals , Cell Line, Tumor , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Pancreas/cytology , Promoter Regions, Genetic/genetics , Protein Binding , Protein Isoforms/metabolism , SOX9 Transcription Factor/genetics
18.
Int J Mol Sci ; 22(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638639

ABSTRACT

The standard treatment of locally advanced esophageal cancer comprises multimodal treatment concepts including preoperative chemoradiotherapy (CRT) followed by radical surgical resection. However, despite intensified treatment approaches, 5-year survival rates are still low. Therefore, new strategies are required to overcome treatment resistance, and to improve patients' outcome. In this study, we investigated the impact of Wnt/ß-catenin signaling on CRT resistance in esophageal cancer cells. Experiments were conducted in adenocarcinoma and squamous cell carcinoma cell lines with varying expression levels of Wnt proteins and Wnt/ß-catenin signaling activities. To investigate the effect of Wnt/ß-catenin signaling on CRT responsiveness, we genetically or pharmacologically inhibited Wnt/ß-catenin signaling. Our experiments revealed that inhibition of Wnt/ß-catenin signaling sensitizes cell lines with robust pathway activity to CRT. In conclusion, Wnt/ß-catenin activity may guide precision therapies in esophageal carcinoma patients.


Subject(s)
Drug Resistance, Neoplasm/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Cell Line, Tumor , Chemoradiotherapy/methods , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Humans
19.
Gut ; 69(8): 1472-1482, 2020 08.
Article in English | MEDLINE | ID: mdl-32001555

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies. DESIGN: We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC. RESULTS: We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition. CONCLUSION: SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Aged , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Cell Proliferation , Enzyme Inhibitors/pharmacology , Esters/pharmacology , Female , Gene Amplification , Gene Expression , Humans , Male , Mice , Middle Aged , Neoplasm Transplantation , Organoids/metabolism , Pancreatic Neoplasms/drug therapy , Prognosis , Proto-Oncogene Proteins c-myc/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Sulfonic Acids , Sumoylation/drug effects , Sumoylation/genetics , Transcriptome/drug effects , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitins/genetics , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL