Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Struct Biol ; 203(2): 71-80, 2018 08.
Article in English | MEDLINE | ID: mdl-29545204

ABSTRACT

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production. Most laboratories have preference in using either the E. coli transposition-based recombination bacmid technology (e.g. Bac-to-Bac®) or homologous recombination transfection within insect cells (e.g. flashBAC™). Limited data is presented in the literature to benchmark the protocols used for these baculovirus vectors to facilitate the selection of a system for optimal production of target proteins. Taking advantage of the Protein Production and Purification Partnership in Europe (P4EU) scientific network, a benchmarking initiative was designed to compare the diverse protocols established in thirteen individual laboratories. This benchmarking initiative compared the expression of four selected intracellular proteins (mouse Dicer-2, 204 kDa; human ABL1 wildtype, 126 kDa; human FMRP, 68 kDa; viral vNS1-H1, 76 kDa). Here, we present the expression and purification results on these proteins and highlight the significant differences in expression yields obtained using different commercially-packaged baculovirus vectors. The highest expression level for difficult-to-express intracellular protein candidates were observed with the EmBacY baculovirus vector system.


Subject(s)
Baculoviridae/genetics , Genetic Vectors/genetics , Recombinant Proteins/metabolism , Animals , Cell Line , Escherichia coli/genetics , Escherichia coli/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Humans , Mice , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Recombinant Proteins/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , Sf9 Cells
2.
PLoS Pathog ; 12(4): e1005538, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27070311

ABSTRACT

Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.


Subject(s)
Antigenic Variation/genetics , Gene Expression/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Animals , Antigenic Variation/immunology , Culicidae , Humans , Malaria, Falciparum/transmission , Protozoan Proteins/genetics , RNA, Messenger/genetics
3.
Blood ; 127(24): e42-53, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27136945

ABSTRACT

Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission.


Subject(s)
Antigens, Protozoan/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Erythrocyte Deformability , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Plasmodium falciparum , Animals , Cells, Cultured , Host-Parasite Interactions , Humans , Malaria, Falciparum/blood , Phosphorylation , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism
4.
BMC Biotechnol ; 17(1): 83, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29145860

ABSTRACT

BACKGROUND: In the last three decades, the Baculovirus expression vector system (BEV) has evolved to one of the most widely used eukaryotic systems for heterologous protein expression including approved vaccines and therapies. Despite the significant improvements introduced during the past years, the BEV system still has major drawbacks, primarily the time required to generate recombinant virus and virus instability for certain target proteins. In this study we show that the conventional method to generate recombinant Baculovirus using a Tn7 transposition based system can be shortened to a single-step transfection-only procedure without further amplification. METHODS: In a first step we have adapted a recently published protocol that replaces the standard liposome-based transfection procedure of adherent insect cells by transfecting insect cells in suspension with a preformed DNA-PEI complex generating P0 virus. We have then expressed and purified six different target proteins, among them four intracellular and two secreted proteins, by infecting insect cells either with P0 or P1 virus. RESULTS: We demonstrate that transfection in suspension is as efficient as the standard protocol, but in addition allows generation of high amounts of P0 virus early in the process. To test if this P0 virus generated by bacmid transfection can be used directly for protein expression in either the screening or production process, we compared P0 versus amplified P1 virus-mediated protein expression. We show that protein expression levels, purity and yield of the purified proteins are equally high for P0 and P1. CONCLUSION: The standard protocol for generating recombinant baculovirus comprises transfection of the bacmid followed by one or two subsequent virus amplification steps. In this study we show that Baculovirus generated by transfection-only is equally efficient in driving protein expression. This reduces the time from bacmid DNA to protein to eight days and reduces the risk of virus decay. In contrast to transient gene expression protocols, the required amount of DNA is minimal: 100 µg bacmid DNA is sufficient for a production scale of 10 L.


Subject(s)
Baculoviridae/genetics , Genetic Vectors/genetics , Recombinant Proteins , Transfection/methods , Virus Cultivation/methods , Animals , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera
5.
Malar J ; 14: 274, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26173856

ABSTRACT

BACKGROUND: Variant surface antigens (VSA) exposed on the membrane of Plasmodium falciparum infected erythrocytes mediate immune evasion and are important pathogenicity factors in malaria disease. In addition to the well-studied PfEMP1, the small VSA families RIFIN, STEVOR and PfMC-2TM are assumed to play a role in this process. METHODS: This study presents a detailed comparative characterization of the localization, membrane topology and extraction profile across the life cycle of various members of these protein families employing confocal microscopy, immunoelectron microscopy and immunoblots. RESULTS: The presented data reveal a clear association of variants of the RIFIN, STEVOR and PfMC-2TM proteins with the host cell membrane and topological studies indicate that the semi-conserved N-terminal region of RIFINs and some STEVOR proteins is exposed at the erythrocyte surface. At the Maurer's clefts, the semi-conserved N-terminal region as well as the variable stretch of RIFINs appears to point to the lumen away from the erythrocyte cytoplasm. These results challenge the previously proposed two transmembrane topology model for the RIFIN and STEVOR protein families and suggest that only one hydrophobic region spans the membrane. In contrast, PfMC-2TM proteins indeed seem to be anchored by two hydrophobic stretches in the host cell membrane exposing just a few, variable amino acids at the surface of the host cell. CONCLUSION: Together, the host cell surface exposure and topology of RIFIN and STEVOR proteins suggests members of these protein families may indeed be involved in immune evasion of the infected erythrocyte, whereas members of the PfMC-2TM family seem to bear different functions in parasite biology.


Subject(s)
Antigens, Protozoan/metabolism , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/parasitology , Erythrocytes/parasitology , Membrane Proteins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antibodies, Protozoan/chemistry , Antibodies, Protozoan/metabolism , Antigens, Protozoan/chemistry , Humans , Membrane Proteins/chemistry , Microscopy, Fluorescence , Models, Biological , Protozoan Proteins/chemistry
6.
Elife ; 122024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270586

ABSTRACT

The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Transcriptome , Benchmarking , Emotions
7.
BMC Biotechnol ; 13: 12, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23410102

ABSTRACT

BACKGROUND: Expression and purification of correctly folded proteins typically require screening of different parameters such as protein variants, solubility enhancing tags or expression hosts. Parallel vector series that cover all variations are available, but not without compromise. We have established a fast, efficient and absolutely background free cloning approach that can be applied to any selected vector. RESULTS: Here we describe a method to tailor selected expression vectors for parallel Sequence and Ligation Independent Cloning. SLIC cloning enables precise and sequence independent engineering and is based on joining vector and insert with 15-25 bp homologies on both DNA ends by homologous recombination. We modified expression vectors based on pET, pFastBac and pTT backbones for parallel PCR-based cloning and screening in E.coli, insect cells and HEK293E cells, respectively. We introduced the toxic ccdB gene under control of a strong constitutive promoter for counterselection of insert less vector. In contrast to DpnI treatment commonly used to reduce vector background, ccdB used in our vector series is 100% efficient in killing parental vector carrying cells and reduces vector background to zero. In addition, the 3' end of ccdB functions as a primer binding site common to all vectors. The second shared primer binding site is provided by a HRV 3C protease cleavage site located downstream of purification and solubility enhancing tags for tag removal. We have so far generated more than 30 different parallel expression vectors, and successfully cloned and expressed more than 250 genes with this vector series. There is no size restriction for gene insertion, clone efficiency is > 95% with clone numbers up to 200. The procedure is simple, fast, efficient and cost-effective. All expression vectors showed efficient expression of eGFP and different target proteins requested to be produced and purified at our Core Facility services. CONCLUSION: This new expression vector series allows efficient and cost-effective parallel cloning and thus screening of different protein constructs, tags and expression hosts.


Subject(s)
Cloning, Molecular , Genetic Vectors/metabolism , 3C Viral Proteases , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Baculoviridae/genetics , Base Sequence , Binding Sites , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , DNA Primers/chemistry , DNA Primers/metabolism , Escherichia coli/metabolism , Genetic Vectors/genetics , HEK293 Cells , Homologous Recombination , Humans , Molecular Sequence Data , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Sf9 Cells , Spodoptera , Viral Proteins/genetics , Viral Proteins/metabolism
8.
Virus Res ; 336: 199231, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37769814

ABSTRACT

Cetacean morbillivirus (CeMV) is an enveloped, non-segmented, negative-stranded RNA virus that infects marine mammals, spreading across species and causing lethal disease outbreaks worldwide. Among the eight proteins encoded by the CeMV genome, the haemagglutinin (H) glycoprotein is responsible for the virus attachment to host cell receptors. CeMV H represents an attractive target for antiviral and diagnostic research, yet the elucidation of the molecular mechanisms underlying its role in infection and inter-species transmission was hampered thus far due to the unavailability of recombinant versions of the protein. Here we present the cloning, expression and purification of a recombinant CeMV H ectodomain (rH-ecto), providing an initial characterization of its biophysical and structural properties. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (PAGE) combined to Western blot analysis and periodic acid Schiff assay showed that CeMV rH-ecto is purifiable at homogeneity from insect cells as a secreted, soluble and glycosylated protein. Miniaturized differential scanning fluorimetry, Blue Native PAGE and size exclusion chromatography coupled to multiangle light scattering revealed that CeMV rH-ecto is globularly folded, thermally stable and exists in solution in the oligomeric states of dimer and multiple of dimers. Furthermore, negative stain electron microscopy single particle analysis allowed us to delineate a low-resolution molecular architecture of the CeMV rH-ecto dimer, which recapitulates native assemblies from other morbilliviral H proteins, such as those from measles virus and canine distemper virus. This set of experiments by orthogonal techniques validates the CeMV rH-ecto as an experimental model for future biochemical studies on its structure and functions.

9.
Front Immunol ; 13: 920210, 2022.
Article in English | MEDLINE | ID: mdl-35795665

ABSTRACT

In this prospective observational cohort study we analyzed cellular and serological immune response parameters against SARS-CoV-2 and current variants of concern (VOC) in 147 COVID-19-convalescent and 39 COVID-19-naïve individuals before and after BNT162b2 booster vaccination. No significant differences regarding immunological response parameters were observed between younger and older individuals. Booster vaccination induced full recovery of both cellular and serological response parameters including IFN-γ secretion and anti-spike antibody titers with strong neutralization capacities against wild type SARS-COV-2 and Delta. Surprisingly, even serological neutralization capacity against Omicron was detectable one month after second vaccination and four months before it had been first observed in South Africa. As a result, more than 90% of convalescent individuals exhibited detectable and 75% strong Omicron neutralization capacity after booster vaccination, compared with 72% and 46% of COVID-19-naïve individuals. Our results support the notion that broad and cross-reactive immune memory against SARS-CoV-2 including currently known VOCs can be established by booster vaccination with spike-based mRNA vaccines like BNT162b2, particularly in COVID-19-convalescent individuals of all ages. Nevertheless, especially in COVID-19-naïve individuals future variants escaping the memory immune response may require vaccine approaches such as inactivated whole virus vaccines, which include all antigenic components of the virus.


Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/prevention & control , Humans , Prospective Studies , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
10.
Front Immunol ; 13: 999693, 2022.
Article in English | MEDLINE | ID: mdl-36466833

ABSTRACT

Introduction: Humoral immunity after SARS-CoV-2 vaccination has been extensively investigated in blood. Aim of this study was to develop an ELISA method in order to determine the prevalence of IgG and IgA SARS-CoV-2 domain 1 spike-protein (S) specific antibodies (Abs) in buccal and nasal mucosal surfaces of vaccinees. Methods: To this end, we analyzed 69 individuals who received their first vaccine dose between February and July 2021. Vaccines administered were BNT162b2, mRNA-1273 or ChAdOx1-nCoV-19. Detection of IgG and IgA Abs was performed using commercial ELISA kits for both blood and swab samples after protocol modification for the latter. Results: Anti-spike IgG and IgA Abs in the buccal and/or nasal swabs were detectable in >81% of the study subjects after the second dose. The IgG measurements in buccal swabs appeared to correlate in a more consistent way with the respective measurements in blood with a correlation coefficient of r=0.74. It is of note that IgA Abs appeared to be significantly more prevalent in the nasal compared to the buccal mucosa. Optimal selection of the assay cut-off for the IgG antibody detection in buccal swabs conferred a sensitivity of 91.8% and a specificity of 100%. Last, individuals vaccinated with mRNA-based vaccines exhibited higher antibody levels in both blood and mucosal surfaces compared to those receiving ChAdOx1-nCoV-19 confirming previously reported results. Conclusion: In conclusion, our findings show a differential prevalence of anti-S Abs on mucosal surfaces after vaccination for SARS-CoV-2, while they also set the basis for potential future use of IgG antibody detection in buccal swabs for extended immunity screening in large populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/prevention & control , Nasal Mucosa , Vaccination , Immunoglobulin A , Immunoglobulin G
11.
Methods Enzymol ; 660: 171-190, 2021.
Article in English | MEDLINE | ID: mdl-34742387

ABSTRACT

Baculovirus-insect cell expression (BEV) has become one of the most widely used eukaryotic systems for heterologous protein expression. The combination of engineered baculovirus genomes together with a variety of compatible vectors, robust insect cell lines, serum-free media and commercial kits have made it a standard workhorse in many "non-virology-expert" laboratories. Despite these significant improvements, the BEV system still has major drawbacks, primarily the time required to amplify recombinant virus and its inherent instability. Here we present an easy-to-adopt simplified and shortened protocol.


Subject(s)
Baculoviridae , Genetic Vectors , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cell Line , Genetic Vectors/genetics , Insecta , Recombinant Proteins/metabolism
12.
Front Immunol ; 12: 743422, 2021.
Article in English | MEDLINE | ID: mdl-34659239

ABSTRACT

Elderly residents of long-term care facilities (LTCFs) have long been underrepresented in studies on vaccine efficacy, particularly in light of currently emerging variants of concern (VOCs). In this prospective observational cohort study, we analyzed serological immune responses in 190 individuals before, 3 weeks after 1st and 3 weeks after 2nd vaccination with BNT162b2. Unvaccinated COVID-19-convalescent subjects served as reference. End points comprised serum anti-spike IgG and IgA titers as well as neutralization capacities against unmutated and mutated SARS-CoV-2 receptor binding domains including B.1.1.7, B.1.351 and P.1. We found that antibody titers and neutralization capacities up to 3 weeks after 2nd vaccination with BNT162b2 were significantly higher in COVID-19-convalescent as compared to COVID-19-naive vaccinees. Moreover, pre-vaccination anti-NCP IgG titers, but not age or gender, had a high impact on the strength and kinetics of post-vaccination neutralization capacity development. Most importantly, BNT162b2-induced neutralization capacity was cross-reactive with VOCs. In contrast to unvaccinated convalescents, vaccinated convalescent individuals of all ages acquired strong neutralizing capacities against current VOCs. The present study suggests that COVID-19-convalescent individuals with a broad age range between 18 and 98 years benefit from BNT162b2 vaccination by developing strong and broad neutralizing immune responses against SARS-CoV-2 including current VOCs.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/prevention & control , Convalescence , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Long-Term Care , Middle Aged , Prospective Studies , Vaccination , Young Adult
13.
Vaccines (Basel) ; 9(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34452043

ABSTRACT

To identify the most efficient methods of immunological protection against SARS-CoV-2, including the currently most widespread variants of concern (VOCs)-B.1.1.7, B.1.351 and P.1-a simultaneous side-by-side-comparison of available vaccination regimes is required. In this observational cohort study, we compared immunological responses in 144 individuals vaccinated with the mRNA vaccines BNT162b2 or mRNA-1273 and the vector vaccine ChAdOx1-nCoV-19, either alone, in combination, or in the context of COVID-19-convalescence. Unvaccinated COVID-19-convalescent subjects served as a reference. We found that cellular and serological immune responses, including neutralizing capacity against VOCs, were significantly stronger with mRNA vaccines as compared with COVID-19-convalescent individuals or vaccinated individuals receiving the vector vaccine ChAdOx1-nCoV-19. Booster immunizations with mRNA vaccines triggered strong and broadly neutralizing antibody and IFN-γ responses in 100% of vaccinated individuals investigated. This effect was particularly strong in COVID-19-convalescent and ChAdOx1-nCoV-19-primed individuals, who were characterized by comparably moderate cellular and neutralizing antibody responses before mRNA vaccine booster. Heterologous vaccination regimes and convalescent booster regimes using mRNA vaccines may allow enhanced protection against SARS-CoV-2, including current VOCs. Furthermore, such regimes may facilitate rapid (re-)qualification of convalescent plasma donors with high titers of broadly neutralizing antibodies.

14.
Elife ; 102021 04 28.
Article in English | MEDLINE | ID: mdl-33908865

ABSTRACT

Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.


Subject(s)
Malaria, Falciparum/genetics , Plasmodium falciparum/physiology , Adult , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cohort Studies , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/metabolism , Female , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/pathology , Male , Plasmodium falciparum/genetics , Protein Binding , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Young Adult
15.
mBio ; 10(4)2019 07 30.
Article in English | MEDLINE | ID: mdl-31363031

ABSTRACT

During its intraerythrocytic development, the malaria parasite Plasmodium falciparum exposes variant surface antigens (VSAs) on infected erythrocytes to establish and maintain an infection. One family of small VSAs is the polymorphic STEVOR proteins, which are marked for export to the host cell surface through their PEXEL signal peptide. Interestingly, some STEVORs have also been reported to localize to the parasite plasma membrane and apical organelles, pointing toward a putative function in host cell egress or invasion. Using deep RNA sequencing analysis, we characterized P. falciparumstevor gene expression across the intraerythrocytic development cycle, including free merozoites, in detail and used the resulting stevor expression profiles for hierarchical clustering. We found that most stevor genes show biphasic expression oscillation, with maximum expression during trophozoite stages and a second peak in late schizonts. We selected four STEVOR variants, confirmed the expected export of these proteins to the host cell membrane, and tracked them to a secondary location, either to the parasite plasma membrane or the secretory organelles of merozoites in late schizont stages. We investigated the function of a particular STEVOR that showed rhoptry localization and demonstrated its role at the parasite-host interface during host cell invasion by specific antisera and targeted gene disruption. Experimentally determined membrane topology of this STEVOR revealed a single transmembrane domain exposing the semiconserved as well as variable protein regions to the cell surface.IMPORTANCE Malaria claims about half a million lives each year. Plasmodium falciparum, the causative agent of the most severe form of the disease, uses proteins that are translocated to the surface of infected erythrocytes for immune evasion. To circumvent the detection of these gene products by the immune system, the parasite evolved a complex strategy that includes gene duplications and elaborate sequence polymorphism. STEVORs are one family of these variant surface antigens and are encoded by about 40 genes. Using deep RNA sequencing of blood-stage parasites, including free merozoites, we first established stevor expression of the cultured isolate and compared it with published transcriptomes. We reveal a biphasic expression of most stevor genes and confirm this for individual STEVORs at the protein level. The membrane topology of a rhoptry-associated variant was experimentally elucidated and linked to host cell invasion, underlining the importance of this multifunctional protein family for parasite proliferation.


Subject(s)
Plasmodium falciparum/pathogenicity , Animals , Antigens, Protozoan/immunology , Erythrocytes/immunology , Humans , Malaria/immunology , Malaria/parasitology , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
16.
Nucleic Acids Res ; 32(22): e177, 2004 Dec 14.
Article in English | MEDLINE | ID: mdl-15598819

ABSTRACT

Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) was recently developed for PCR product analysis, which allowed for real-time monitoring of hybridization processes and for the detection of trace amounts of PCR products, with a detection limit of 100 fmol on the peptide nucleic acid (PNA) probe surface, and 500 fmol on the DNA probe surface. By selectively labeling the strands of PCR-amplified DNA, it was shown that the heat denaturation process in combination with the application of low-salt condition substantially reduced the interference from the antisense strands and thus simplified the surface hybridization. Furthermore, SPFS was demonstrated to be capable of quantitatively discriminating the difference induced by single nucleotide substitution, even within one minute of contact time.


Subject(s)
Nucleic Acid Hybridization/methods , Nucleic Acid Probes/chemistry , Peptide Nucleic Acids/chemistry , Polymerase Chain Reaction , Spectrometry, Fluorescence/methods , Surface Plasmon Resonance , Antisense Elements (Genetics) , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL