Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nature ; 625(7996): 735-742, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030727

ABSTRACT

Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.


Subject(s)
Conserved Sequence , Evolution, Molecular , Genome , Primates , Animals , Female , Humans , Pregnancy , Conserved Sequence/genetics , Deoxyribonuclease I/metabolism , DNA/genetics , DNA/metabolism , Genome/genetics , Mammals/classification , Mammals/genetics , Placenta , Primates/classification , Primates/genetics , Regulatory Sequences, Nucleic Acid/genetics , Reproducibility of Results , Transcription Factors/metabolism , Proteins/genetics , Gene Expression Regulation/genetics
2.
Proc Natl Acad Sci U S A ; 121(12): e2319496121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38470926

ABSTRACT

Without the ability to control or randomize environments (or genotypes), it is difficult to determine the degree to which observed phenotypic differences between two groups of individuals are due to genetic vs. environmental differences. However, some have suggested that these concerns may be limited to pathological cases, and methods have appeared that seem to give-directly or indirectly-some support to claims that aggregate heritable variation within groups can be related to heritable variation among groups. We consider three families of approaches: the "between-group heritability" sometimes invoked in behavior genetics, the statistic [Formula: see text] used in empirical work in evolutionary quantitative genetics, and methods based on variation in ancestry in an admixed population, used in anthropological and statistical genetics. We take up these examples to show mathematically that information on within-group genetic and phenotypic information in the aggregate cannot separate among-group differences into genetic and environmental components, and we provide simulation results that support our claims. We discuss these results in terms of the long-running debate on this topic.


Subject(s)
Biological Evolution , Genetics, Population , Humans , Phenotype , Genotype , Computer Simulation , Genetic Variation
3.
Am J Hum Genet ; 110(12): 2077-2091, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38065072

ABSTRACT

Understanding the genetic basis of complex phenotypes is a central pursuit of genetics. Genome-wide association studies (GWASs) are a powerful way to find genetic loci associated with phenotypes. GWASs are widely and successfully used, but they face challenges related to the fact that variants are tested for association with a phenotype independently, whereas in reality variants at different sites are correlated because of their shared evolutionary history. One way to model this shared history is through the ancestral recombination graph (ARG), which encodes a series of local coalescent trees. Recent computational and methodological breakthroughs have made it feasible to estimate approximate ARGs from large-scale samples. Here, we explore the potential of an ARG-based approach to quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches. We propose a framework that relies on the conditional expectation of a local genetic relatedness matrix (local eGRM) given the ARG. Simulations show that our method is especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs in understudied populations. We use local eGRM to analyze two chromosomes containing known body size loci in a sample of Native Hawaiians. Our investigations can provide intuition about the benefits of using estimated ARGs in population- and statistical-genetic methods in general.


Subject(s)
Genetics, Population , Genome-Wide Association Study , Quantitative Trait Loci , Humans , Chromosome Mapping/methods , Models, Genetic , Phenotype , Quantitative Trait Loci/genetics , Native Hawaiian or Other Pacific Islander/genetics
4.
Nature ; 536(7615): 205-9, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27487209

ABSTRACT

Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P < 0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11. rearrangement show that more than 96% of breakpoints occur within the H. sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282 ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.


Subject(s)
Chromosomes, Human, Pair 16/genetics , DNA Copy Number Variations/genetics , Evolution, Molecular , Genetic Predisposition to Disease , Proteins/genetics , Animals , Autistic Disorder/genetics , Chromosome Breakage , Gene Duplication , Homeostasis/genetics , Humans , Iron/metabolism , Pan troglodytes/genetics , Pongo/genetics , Proteins/analysis , Recombination, Genetic , Species Specificity , Time Factors
5.
BMC Bioinformatics ; 22(1): 459, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34563119

ABSTRACT

BACKGROUND: We present ARCHes, a fast and accurate haplotype-based approach for inferring an individual's ancestry composition. Our approach works by modeling haplotype diversity from a large, admixed cohort of hundreds of thousands, then annotating those models with population information from reference panels of known ancestry. RESULTS: The running time of ARCHes does not depend on the size of a reference panel because training and testing are separate processes, and the inferred population-annotated haplotype models can be written to disk and reused to label large test sets in parallel (in our experiments, it averages less than one minute to assign ancestry from 32 populations using 10 CPU). We test ARCHes on public data from the 1000 Genomes Project and the Human Genome Diversity Project (HGDP) as well as simulated examples of known admixture. CONCLUSIONS: Our results demonstrate that ARCHes outperforms RFMix at correctly assigning both global and local ancestry at finer population scales regardless of the amount of population admixture.


Subject(s)
Genetics, Population , Genome, Human , Haplotypes , Humans , Polymorphism, Single Nucleotide
6.
Nat Rev Genet ; 16(12): 727-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26553329

ABSTRACT

The genomes of contemporary humans contain considerable information about the history of our species. Although the general contours of human evolutionary history have been defined with increasing resolution throughout the past several decades, the continuing deluge of massively large sequencing data sets presents new opportunities and challenges for understanding human evolutionary history. Here, we review the signatures that demographic history imparts on patterns of DNA sequence variation, statistical methods that have been developed to leverage information contained in genome-scale data sets and insights gleaned from these studies. We also discuss the importance of using exploratory analyses to assess data quality, the strengths and limitations of commonly used population genomics methods, and factors that confound population genomics inferences.


Subject(s)
Databases, Nucleic Acid , Evolution, Molecular , Genetic Variation , Genetics, Medical/methods , Genome, Human , Genomics/methods , Humans , Models, Genetic
7.
Proc Natl Acad Sci U S A ; 115(10): 2341-2346, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29463742

ABSTRACT

The Caribbean was one of the last parts of the Americas to be settled by humans, but how and when the islands were first occupied remains a matter of debate. Ancient DNA can help answering these questions, but the work has been hampered by poor DNA preservation. We report the genome sequence of a 1,000-year-old Lucayan Taino individual recovered from the site of Preacher's Cave in the Bahamas. We sequenced her genome to 12.4-fold coverage and show that she is genetically most closely related to present-day Arawakan speakers from northern South America, suggesting that the ancestors of the Lucayans originated there. Further, we find no evidence for recent inbreeding or isolation in the ancient genome, suggesting that the Lucayans had a relatively large effective population size. Finally, we show that the native American components in some present-day Caribbean genomes are closely related to the ancient Taino, demonstrating an element of continuity between precontact populations and present-day Latino populations in the Caribbean.


Subject(s)
American Indian or Alaska Native/genetics , Genome, Human/genetics , Human Migration/statistics & numerical data , Adult , Archaeology , Bahamas , DNA, Ancient , DNA, Mitochondrial/genetics , Female , Genetics, Population , Genomics , Hispanic or Latino/genetics , History, Ancient , Human Migration/history , Humans , Male , Paleontology , Phylogeny , Young Adult
8.
Nature ; 513(7518): 409-13, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25230663

ABSTRACT

We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.


Subject(s)
Genome, Human/genetics , White People/classification , White People/genetics , Agriculture/history , Asia/ethnology , Europe , History, Ancient , Humans , Population Dynamics , Principal Component Analysis , Workforce
9.
Proc Natl Acad Sci U S A ; 114(50): 13224-13229, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29114046

ABSTRACT

The relative importance of different modes of evolution in shaping phenotypic diversity remains a hotly debated question. Fossil data suggest that stasis may be a common mode of evolution, while modern data suggest some lineages experience very fast rates of evolution. One way to reconcile these observations is to imagine that evolution proceeds in pulses, rather than in increments, on geological timescales. To test this hypothesis, we developed a maximum-likelihood framework for fitting Lévy processes to comparative morphological data. This class of stochastic processes includes both an incremental and a pulsed component. We found that a plurality of modern vertebrate clades examined are best fitted by pulsed processes over models of incremental change, stationarity, and adaptive radiation. When we compare our results to theoretical expectations of the rate and speed of regime shifts for models that detail fitness landscape dynamics, we find that our quantitative results are broadly compatible with both microevolutionary models and observations from the fossil record.


Subject(s)
Body Size/genetics , Evolution, Molecular , Models, Genetic , Vertebrates/genetics , Animals , Female , Male , Vertebrates/anatomy & histology
10.
PLoS Genet ; 10(11): e1004697, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25375159

ABSTRACT

Quantifying the proportion of polymorphic mutations that are deleterious or neutral is of fundamental importance to our understanding of evolution, disease genetics and the maintenance of variation genome-wide. Here, we develop an approximation to the distribution of fitness effects (DFE) of segregating single-nucleotide mutations in humans. Unlike previous methods, we do not assume that synonymous mutations are neutral or not strongly selected, and we do not rely on fitting the DFE of all new nonsynonymous mutations to a single probability distribution, which is poorly motivated on a biological level. We rely on a previously developed method that utilizes a variety of published annotations (including conservation scores, protein deleteriousness estimates and regulatory data) to score all mutations in the human genome based on how likely they are to be affected by negative selection, controlling for mutation rate. We map this and other conservation scores to a scale of fitness coefficients via maximum likelihood using diffusion theory and a Poisson random field model on SNP data. Our method serves to approximate the deleterious DFE of mutations that are segregating, regardless of their genomic consequence. We can then compare the proportion of mutations that are negatively selected or neutral across various categories, including different types of regulatory sites. We observe that the distribution of intergenic polymorphisms is highly peaked at neutrality, while the distribution of nonsynonymous polymorphisms has a second peak at [Formula: see text]. Other types of polymorphisms have shapes that fall roughly in between these two. We find that transcriptional start sites, strong CTCF-enriched elements and enhancers are the regulatory categories with the largest proportion of deleterious polymorphisms.


Subject(s)
Evolution, Molecular , Genetic Fitness , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Drift , Genetics, Population , Genome, Human , Humans , Mutation Rate
11.
Theor Popul Biol ; 102: 85-93, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25840144

ABSTRACT

When models of quantitative genetic variation are built from population genetic first principles, several assumptions are often made. One of the most important assumptions is that traits are controlled by many genes of small effect. This leads to a prediction of a Gaussian trait distribution in the population, via the Central Limit Theorem. Since these biological assumptions are often unknown or untrue, we characterized how finite numbers of loci or large mutational effects can impact the sampling distribution of a quantitative trait. To do so, we developed a neutral coalescent-based framework, allowing us to gain a detailed understanding of how number of loci and the underlying mutational model impacts the distribution of a quantitative trait. Through both analytical theory and simulation we found the normality assumption was highly sensitive to the details of the mutational process, with the greatest discrepancies arising when the number of loci was small or the mutational kernel was heavy-tailed. In particular, skewed mutational effects will produce skewed trait distributions and fat-tailed mutational kernels result in multimodal sampling distributions, even for traits controlled by a large number of loci. Since selection models and robust neutral models may produce qualitatively similar sampling distributions, we advise extra caution should be taken when interpreting model-based results for poorly understood systems of quantitative traits.


Subject(s)
Genetic Variation/genetics , Genetics, Population , Mutation/genetics , Quantitative Trait Loci/genetics , Humans , Models, Genetic , Phenotype
12.
Theor Popul Biol ; 92: 30-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24269333

ABSTRACT

The Wright-Fisher process with selection is an important tool in population genetics theory. Traditional analysis of this process relies on the diffusion approximation. The diffusion approximation is usually studied in a partial differential equations framework. In this paper, I introduce a path integral formalism to study the Wright-Fisher process with selection and use that formalism to obtain a simple perturbation series to approximate the transition density. The perturbation series can be understood in terms of Feynman diagrams, which have a simple probabilistic interpretation in terms of selective events. The perturbation series proves to be an accurate approximation of the transition density for weak selection and is shown to be arbitrarily accurate for any selection coefficient.


Subject(s)
Models, Genetic , Selection, Genetic , Probability
13.
Syst Biol ; 62(2): 193-204, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23034385

ABSTRACT

Gaussian processes, a class of stochastic processes including Brownian motion and the Ornstein-Uhlenbeck process, are widely used to model continuous trait evolution in statistical phylogenetics. Under such processes, observations at the tips of a phylogenetic tree have a multivariate Gaussian distribution, which may lead to suboptimal model specification under certain evolutionary conditions, as supposed in models of punctuated equilibrium or adaptive radiation. To consider non-normally distributed continuous trait evolution, we introduce a method to compute posterior probabilities when modeling continuous trait evolution as a Lévy process. Through data simulation and model testing, we establish that single-rate Brownian motion (BM) and Lévy processes with jumps generate distinct patterns in comparative data. We then analyzed body mass and endocranial volume measurements for 126 primates. We rejected single-rate BM in favor of a Lévy process with jumps for each trait, with the lineage leading to most recent common ancestor of great apes showing particularly strong evidence against single-rate BM.


Subject(s)
Models, Biological , Phenotype , Phylogeny , Animals , Body Mass Index , Computer Simulation , Primates/classification , Primates/physiology
14.
PLoS Comput Biol ; 9(10): e1003255, 2013.
Article in English | MEDLINE | ID: mdl-24130471

ABSTRACT

One of the outstanding challenges in comparative genomics is to interpret the evolutionary importance of regulatory variation between species. Rigorous molecular evolution-based methods to infer evidence for natural selection from expression data are at a premium in the field, and to date, phylogenetic approaches have not been well-suited to address the question in the small sets of taxa profiled in standard surveys of gene expression. We have developed a strategy to infer evolutionary histories from expression profiles by analyzing suites of genes of common function. In a manner conceptually similar to molecular evolution models in which the evolutionary rates of DNA sequence at multiple loci follow a gamma distribution, we modeled expression of the genes of an a priori-defined pathway with rates drawn from an inverse gamma distribution. We then developed a fitting strategy to infer the parameters of this distribution from expression measurements, and to identify gene groups whose expression patterns were consistent with evolutionary constraint or rapid evolution in particular species. Simulations confirmed the power and accuracy of our inference method. As an experimental testbed for our approach, we generated and analyzed transcriptional profiles of four Saccharomyces yeasts. The results revealed pathways with signatures of constrained and accelerated regulatory evolution in individual yeasts and across the phylogeny, highlighting the prevalence of pathway-level expression change during the divergence of yeast species. We anticipate that our pathway-based phylogenetic approach will be of broad utility in the search to understand the evolutionary relevance of regulatory change.


Subject(s)
Evolution, Molecular , Gene Expression Profiling/methods , Genomics/methods , Models, Genetic , Phylogeny , Saccharomyces/genetics
15.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37986815

ABSTRACT

Without the ability to control or randomize environments (or genotypes), it is difficult to determine the degree to which observed phenotypic differences between two groups of individuals are due to genetic vs. environmental differences. However, some have suggested that these concerns may be limited to pathological cases, and methods have appeared that seem to give-directly or indirectly-some support to claims that aggregate heritable variation within groups can be related to heritable variation among groups. We consider three families of approaches: the "between-group heritability" sometimes invoked in behavior genetics, the statistic PST used in empirical work in evolutionary quantitative genetics, and methods based on variation in ancestry in an admixed population, used in anthropological and statistical genetics. We take up these examples to show mathematically that information on within-group genetic and phenotypic information in the aggregate cannot separate among-group differences into genetic and environmental components, and we provide simulation results that support our claims. We discuss these results in terms of the long-running debate on this topic.

16.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496530

ABSTRACT

In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these two fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we derive a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., Genome-Wide Association Studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur using analytical theory and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate this by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study of this, we re-examine an analysis testing for co-evolution of expression levels between genes across a fungal phylogeny, and show that including covariance matrix eigenvectors as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.

17.
ArXiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38495567

ABSTRACT

Collecting genomics data across multiple heterogeneous populations (e.g., across different cancer types) has the potential to improve our understanding of disease. Despite sequencing advances, though, resources often remain a constraint when gathering data. So it would be useful for experimental design if experimenters with access to a pilot study could predict the number of new variants they might expect to find in a follow-up study: both the number of new variants shared between the populations and the total across the populations. While many authors have developed prediction methods for the single-population case, we show that these predictions can fare poorly across multiple populations that are heterogeneous. We prove that, surprisingly, a natural extension of a state-of-the-art single-population predictor to multiple populations fails for fundamental reasons. We provide the first predictor for the number of new shared variants and new total variants that can handle heterogeneity in multiple populations. We show that our proposed method works well empirically using real cancer and population genetics data.

18.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915613

ABSTRACT

Many phenotypic traits have a polygenic genetic basis, making it challenging to learn their genetic architectures and predict individual phenotypes. One promising avenue to resolve the genetic basis of complex traits is through evolve-and-resequence experiments, in which laboratory populations are exposed to some selective pressure and trait-contributing loci are identified by extreme frequency changes over the course of the experiment. However, small laboratory populations will experience substantial random genetic drift, and it is difficult to determine whether selection played a roll in a given allele frequency change. Predicting how much allele frequencies change under drift and selection had remained an open problem well into the 21st century, even those contributing to simple, monogenic traits. Recently, there have been efforts to apply the path integral, a method borrowed from physics, to solve this problem. So far, this approach has been limited to genic selection, and is therefore inadequate to capture the complexity of quantitative, highly polygenic traits that are commonly studied. Here we extend one of these path integral methods, the perturbation approximation, to selection scenarios that are of interest to quantitative genetics. In particular, we derive analytic expressions for the transition probability (i.e., the probability that an allele will change in frequency from x , to y in time t ) of an allele contributing to a trait subject to stabilizing selection, as well as that of an allele contributing to a trait rapidly adapting to a new phenotypic optimum. We use these expressions to characterize the use of allele frequency change to test for selection, as well as explore optimal design choices for evolve-and-resequence experiments to uncover the genetic architecture of polygenic traits under selection.

19.
Mol Biol Evol ; 29(7): 1747-56, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22319167

ABSTRACT

Expression variation is widespread between species. The ability to distinguish regulatory change driven by natural selection from the consequences of neutral drift remains a major challenge in comparative genomics. In this work, we used observations of mRNA expression and promoter sequence to analyze signatures of selection on groups of functionally related genes in Saccharomycete yeasts. In a survey of gene regulons with expression divergence between Saccharomyces cerevisiae and S. paradoxus, we found that most were subject to variation in trans-regulatory factors that provided no evidence against a neutral model. However, we identified one regulon of membrane protein genes controlled by unlinked cis- and trans-acting determinants with coherent effects on gene expression, consistent with a history of directional, nonneutral evolution. For this membrane protein group, S. paradoxus alleles at regulatory loci were associated with elevated expression and altered stress responsiveness relative to other yeasts. In a phylogenetic comparison of promoter sequences of the membrane protein genes between species, the S. paradoxus lineage was distinguished by a short branch length, indicative of strong selective constraint. Likewise, sequence variants within the S. paradoxus population, but not across strains of other yeasts, were skewed toward low frequencies in promoters of genes in the membrane protein regulon, again reflecting strong purifying selection. Our results support a model in which a distinct expression program for the membrane protein genes in S. paradoxus has been preferentially maintained by negative selection as the result of an increased importance to organismal fitness. These findings illustrate the power of integrating expression- and sequence-based tests of natural selection in the study of evolutionary forces that underlie regulatory change.


Subject(s)
Evolution, Molecular , Fungal Proteins/genetics , Membrane Proteins/genetics , Saccharomyces/genetics , Gene Expression Profiling , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
20.
Theor Popul Biol ; 89: 64-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24001410

ABSTRACT

We investigate the properties of a Wright-Fisher diffusion process starting at frequency x at time 0 and conditioned to be at frequency y at time T. Such a process is called a bridge. Bridges arise naturally in the analysis of selection acting on standing variation and in the inference of selection from allele frequency time series. We establish a number of results about the distribution of neutral Wright-Fisher bridges and develop a novel rejection-sampling scheme for bridges under selection that we use to study their behavior.


Subject(s)
Genetics, Population , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL