Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Cancer Res ; 30(8): 1642-1654, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38190111

ABSTRACT

PURPOSE: To achieve eradication of solid tumors, we examined how many neoantigens need to be targeted with how many T-cell receptors (TCR) by which type of T cells. EXPERIMENTAL DESIGN: Unmanipulated, naturally expressed (autochthonous) neoantigens were targeted with adoptively transferred TCR-engineered autologous T cells (TCR-therapy). TCR-therapy used CD8+ T-cell subsets engineered with TCRs isolated from CD8+ T cells (CD8+TCR-therapy), CD4+ T-cell subsets engineered with TCRs isolated from CD4+ T cells (CD4+TCR-therapy), or combinations of both. The targeted tumors were established for at least 3 weeks and derived from primary autochthonous cancer cell cultures, resembling natural solid tumors and their heterogeneity as found in humans. RESULTS: Relapse was common with CD8+TCR-therapy even when targeting multiple different autochthonous neoantigens on heterogeneous solid tumors. CD8+TCR-therapy was only effective against homogenous tumors artificially derived from a cancer cell clone. In contrast, a combination of CD8+TCR-therapy with CD4+TCR-therapy, each targeting one neoantigen, eradicated large and established solid tumors of natural heterogeneity. CD4+TCR-therapy targeted a mutant neoantigen on tumor stroma while direct cancer cell recognition by CD8+TCR-therapy was essential for cure. In vitro data were consistent with elimination of cancer cells requiring a four-cell cluster composed of TCR-engineered CD4+ and CD8+ T cells together with antigen-presenting cells and cancer cells. CONCLUSIONS: Two cancer-specific TCRs can be essential and sufficient to eradicate heterogeneous solid tumors expressing unmanipulated, autochthonous targets. We demonstrate that simplifications to adoptive TCR-therapy are possible without compromising efficacy.


Subject(s)
Antigens, Neoplasm , Neoplasms , Humans , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Immunotherapy, Adoptive/methods
2.
Cancer Gene Ther ; 31(4): 574-585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38267626

ABSTRACT

Aberrant TGFß signaling is linked to metastasis and tumor immune escape of many cancers including metastatic triple negative breast cancer (mTNBC). Previously, we have found that oncolytic adenoviruses expressing a TGFß signaling inhibitory protein (sTGFßRIIFc) induced immune activation in a mouse TNBC (4T1) immunocompetent subcutaneous model with intratumoral injection. Systemic administration of adenoviruses can be a superior route to treat mTNBC but faces the challenges of increased toxicity and viral clearance. Thus, we created a liver-de-targeted sTGFßRIIFc- and LyP-1 peptide-expressing adenovirus (mHAdLyp.sT) with enhanced breast cancer cell tropism. Its safety and immune response features were profiled in the 4T1 model. Our data showed that the systemic administration of mHAdLyp.sT resulted in reduced hepatic and systemic toxicity. mHAdLyp.sT was also effective in increasing Th1 cytokines and anti-tumor cell populations by cytokine analysis, spleen/tumor qRT-PCR, and flow cytometry. We further tested the therapeutic effects of mHAdLyp.sT alone and in combination with immune checkpoint inhibitors (ICIs). mHAdLyp.sT alone and with all ICI combinations elicited significant inhibition of lung metastasis by histological analysis. When mHAdLyp.sT was combined with both anti-PD-1 and anti-CTLA-4 antibodies, primary 4T1 tumor growth was also significantly inhibited. We are confident in advancing this new treatment option for mTNBC.


Subject(s)
Adenoviridae Infections , Mammary Neoplasms, Animal , Triple Negative Breast Neoplasms , Mice , Animals , Humans , Transforming Growth Factor beta/metabolism , Adenoviridae/metabolism , Signal Transduction , Cytokines/metabolism , Liver/pathology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL