Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
Add more filters

Publication year range
1.
J Neurosci ; 44(15)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38383496

ABSTRACT

Almost all medulloblastomas (MB) of the Wingless/Int-1 (WNT) type are characterized by hotspot mutations in CTNNB1, and mouse models have convincingly demonstrated the tumor-initiating role of these mutations. Additional alterations in SMARCA4 are detected in ∼20% of WNT MB, but their functional role is mostly unknown. We, therefore, amended previously described brain lipid binding protein (Blbp)-cre::Ctnnb1(ex3)fl/wt mice by the introduction of floxed Smarca4 alleles. Unexpectedly, mutated and thereby stabilized ß-catenin on its own induced severe developmental phenotypes in male and female Blbp-cre::Ctnnb1(ex3)fl/wt mice in our hands, including a thinned cerebral cortex, hydrocephalus, missing cerebellar layering, and cell accumulations in the brainstem and cerebellum. An additional loss of SMARCA4 even resulted in prenatal death for most mice. Respective Blbp-cre::Ctnnb1(ex3)fl/wt::Smarca4fl/rec mutants (male and female) developed large proliferative lesions in the cerebellum evolving from E13.5 to E16.5. Histological and molecular analysis of these lesions by DNA methylation profiling and single-cell RNA sequencing suggested an origin in early undifferentiated SOX2-positive cerebellar progenitors. Furthermore, upregulated WNT signaling, altered actin/cytoskeleton organization, and reduced neuronal differentiation were evident in mutant cells. In vitro, cells harboring alterations in both Ctnnb1 and Smarca4 were negatively selected and did not show tumorigenic potential after transplantation in adult female recipient mice. However, in cerebellar explant cultures, mutant cells displayed significantly increased proliferation, suggesting an important role of the embryonic microenvironment in the development of lesions. Altogether, these results represent an important first step toward the unraveling of tumorigenic mechanisms induced by aberrant WNT signaling and SMARCA4 deficiency.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Female , Male , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cerebellum/metabolism , Mutation/genetics , Signal Transduction , Tumor Microenvironment
2.
Development ; 148(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34042968

ABSTRACT

During development, gene expression is tightly controlled to facilitate the generation of the diverse cell types that form the central nervous system. Brahma-related gene 1 (Brg1, also known as Smarca4) is the catalytic subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex that regulates transcription. We investigated the role of Brg1 between embryonic day 6.5 (E6.5) and E14.5 in Sox2-positive neural stem cells (NSCs). Being without major consequences at E6.5 and E14.5, loss of Brg1 between E7.5 and E12.5 resulted in the formation of rosette-like structures in the subventricular zone, as well as morphological alterations and enlargement of neural retina (NR). Additionally, Brg1-deficient cells showed decreased survival in vitro and in vivo. Furthermore, we uncovered distinct changes in gene expression upon Brg1 loss, pointing towards impaired neuron functions, especially those involving synaptic communication and altered composition of the extracellular matrix. Comparison with mice deficient for integrase interactor 1 (Ini1, also known as Smarcb1) revealed that the enlarged NR was Brg1 specific and was not caused by a general dysfunction of the SWI/SNF complex. These results suggest a crucial role for Brg1 in NSCs during brain and eye development.


Subject(s)
Brain/embryology , DNA Helicases/genetics , Eye/embryology , Gene Expression Regulation, Developmental/genetics , Nuclear Proteins/genetics , SMARCB1 Protein/genetics , Transcription Factors/genetics , Animals , Apoptosis/genetics , DNA Helicases/metabolism , Extracellular Matrix/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/cytology , Nuclear Proteins/metabolism , Transcription Factors/metabolism
3.
Clin Chem ; 70(1): 250-260, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37624932

ABSTRACT

BACKGROUND: Molecular brain tumor diagnosis is usually dependent on tissue biopsies or resections. This can pose several risks associated with anesthesia or neurosurgery, especially for lesions in the brain stem or other difficult-to-reach anatomical sites. Apart from initial diagnosis, tumor progression, recurrence, or the acquisition of novel genetic alterations can only be proven by re-biopsies. METHODS: We employed Nanopore sequencing on cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and analyzed copy number variations (CNV) and global DNA methylation using a random forest classifier. We sequenced 129 samples with sufficient DNA. These samples came from 99 patients and encompassed 22 entities. Results were compared to clinical diagnosis and molecular analysis of tumor tissue, if available. RESULTS: 110/129 samples were technically successful, and 50 of these contained detectable circulating tumor DNA (ctDNA) by CNV or methylation profiling. ctDNA was detected in samples from patients with progressive disease but also from patients without known residual disease. CNV plots showed diagnostic and prognostic alterations, such as C19MC amplifications in embryonal tumors with multilayered rosettes or Chr.1q gains and Chr.6q losses in posterior fossa group A ependymoma, respectively. Most CNV profiles mirrored the profiles of the respective tumor tissue. DNA methylation allowed exact classification of the tumor in 22/110 cases and led to incorrect classification in 2/110 cases. Only 5/50 samples with detected ctDNA contained tumor cells detectable through microscopy. CONCLUSIONS: Our results suggest that Nanopore sequencing data of cfDNA from CSF samples may be a promising approach for initial brain tumor diagnostics and an important tool for disease monitoring.


Subject(s)
Brain Neoplasms , Cell-Free Nucleic Acids , Nanopore Sequencing , Humans , Cell-Free Nucleic Acids/genetics , DNA Copy Number Variations , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Mutation
4.
Acta Neuropathol ; 147(1): 16, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228887

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) are classified according to cell lineage, which requires immunohistochemistry for adenohypophyseal hormones and the transcription factors (TFs) PIT1, SF1, and TPIT. According to the current WHO 2022 classification, PitNETs with co-expression of multiple TFs are termed "plurihormonal". Previously, PIT1/SF1 co-expression was prevailingly reported in PitNETs, which otherwise correspond to the somatotroph lineage. However, little is known about such tumors and the WHO classification has not recognized their significance. We compiled an in-house case series of 100 tumors, previously diagnosed as somatotroph PitNETs. Following TF staining, histopathological features associated with PIT1/SF1 co-expression were assessed. Integration of in-house and publicly available sample data allowed for a meta-analysis of SF1-associated clinicopathological and molecular features across a total of 270 somatotroph PitNETs. The majority (74%, 52/70) of our densely granulated somatotroph PitNETs (DGST) unequivocally co-expressed PIT1 and SF1 (DGST-PIT1/SF1). None (0%, 0/30) of our sparsely granulated somatotroph PitNETs (SGST) stained positive for SF1 (SGST-PIT1). Among DGST, PIT1/SF1 co-expression was significantly associated with scarce FSH/LH expression and fewer fibrous bodies compared to DGST-PIT1. Integrated molecular analyses including publicly available samples confirmed that DGST-PIT1/SF1, DGST-PIT1 and SGST-PIT1 represent distinct tumor subtypes. Clinicopathological meta-analyses indicated that DGST-PIT1 respond more favorably towards treatment with somatostatin analogs compared to DGST-PIT1/SF1, while both these subtypes show an overall less aggressive clinical course than SGST-PIT1. In this study, we spotlight that DGST with co-expression of PIT1 and SF1 represent a common, yet underrecognized, distinct PitNET subtype. Our study questions the rationale of generally classifying such tumors as "plurihormonal", and calls for a refinement of the WHO classification. We propose the term "somatogonadotroph PitNET".


Subject(s)
Adenoma , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Cell Lineage , Neuroendocrine Tumors/genetics , Pituitary Neoplasms/genetics , Transcription Factors , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism
5.
Acta Neuropathol ; 147(1): 24, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38265522

ABSTRACT

The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%. In sum, our large-scale analysis of ependymomas provides robust information about molecular features and their clinical meaning. Our data are particularly relevant for rare and hardly explored tumor subtypes and seemingly benign variants that display higher recurrence rates than previously believed.


Subject(s)
Ependymoma , Humans , Progression-Free Survival , Protein Processing, Post-Translational
6.
Acta Neuropathol ; 147(1): 23, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38265527

ABSTRACT

Posterior fossa type A (PF-EPN-A, PFA) ependymoma are aggressive tumors that mainly affect children and have a poor prognosis. Histopathology shows significant intratumoral heterogeneity, ranging from loose tissue to often sharply demarcated, extremely cell-dense tumor areas. To determine molecular differences in morphologically different areas and to understand their clinical significance, we analyzed 113 PF-EPN-A samples, including 40 corresponding relapse samples. Cell-dense areas ranged from 0 to 100% of the tumor area and displayed a higher proportion of proliferating tumor cells (p < 0.01). Clinically, cell density was associated with poor progression-free and overall survival (pPFS = 0.0026, pOS < 0.01). Molecularly, tumor areas with low and high cell density showed diverging DNA methylation profiles regarding their similarity to distinct previously discovered PF-EPN-A subtypes in 9/21 cases. Prognostically relevant chromosomal changes at 1q and 6q showed spatial heterogeneity within single tumors and were significantly enriched in cell-dense tumor areas as shown by single-cell RNA (scRNA)-sequencing as well as copy number profiling and fluorescence in situ hybridization (FISH) analyses of different tumor areas. Finally, spatial transcriptomics revealed cell-dense areas of different tumors to be more similar than various different areas of the same tumor. High-density areas distinctly overexpressed genes encoding histone proteins, WNT5A, TGFB1, or IGF2. Relapsing tumors displayed a higher proportion of cell-dense areas (p = 0.036), a change in PF-EPN-A methylation subtypes (13/32 patients), and novel chromosome 1q gains and 6q losses (12/32 cases) compared to corresponding primary tumors. Our data suggest that PF-EPN-A ependymomas habor a previously unrecognized intratumoral heterogeneity with clinical implications, which has to be accounted for when selecting diagnostic material, inter alia, by histological evaluation of the proportion of cell-dense areas.


Subject(s)
Ependymoma , Neoplasm Recurrence, Local , Child , Humans , In Situ Hybridization, Fluorescence , Histones , Gene Expression Profiling
7.
Acta Neuropathol ; 147(1): 21, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38244080

ABSTRACT

The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/therapy , DNA Methylation , Neoplasm Recurrence, Local/genetics , Survival Analysis
8.
PLoS Genet ; 17(11): e1009868, 2021 11.
Article in English | MEDLINE | ID: mdl-34752469

ABSTRACT

While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.


Subject(s)
Brain Neoplasms/genetics , DNA Replication/genetics , Genomic Instability , Glioma/genetics , Histones/physiology , Brain Neoplasms/pathology , Child , Gene Expression Regulation, Neoplastic , Glioma/pathology , Humans , Mitosis/genetics
9.
Br J Cancer ; 129(10): 1580-1589, 2023 11.
Article in English | MEDLINE | ID: mdl-37726478

ABSTRACT

BACKGROUND: Germ cell tumors (GCT) might undergo transformation into a somatic-type malignancy (STM), resulting in a cell fate switch to tumors usually found in somatic tissues, such as rhabdomyosarcomas or adenocarcinomas. STM is associated with a poor prognosis, but the molecular and epigenetic mechanisms triggering STM are still enigmatic, the tissue-of-origin is under debate and biomarkers are lacking. METHODS: To address these questions, we characterized a unique cohort of STM tissues on mutational, epigenetic and protein level using modern and high-throughput methods like TSO assays, 850k DNA methylation arrays and mass spectrometry. RESULTS AND CONCLUSIONS: For the first time, we show that based on DNA methylation and proteome data carcinoma-related STM more closely resemble yolk-sac tumors, while sarcoma-related STM resemble teratoma. STM harbor mutations in FGF signaling factors (FGF6/23, FGFR1/4) highlighting the corresponding pathway as a therapeutic target. Furthermore, STM utilize signaling pathways, like AKT, FGF, MAPK, and WNT to mediate molecular functions coping with oxidative stress, toxin transport, DNA helicase activity, apoptosis and the cell cycle. Collectively, these data might explain the high therapy resistance of STM. Finally, we identified putative novel biomarkers secreted by STM, like EFEMP1, MIF, and DNA methylation at specific CpG dinucleotides.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Teratoma , Humans , DNA Methylation , Proteome/genetics , Proteome/metabolism , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/genetics , Teratoma/genetics , Teratoma/metabolism , Teratoma/pathology , Biomarkers/metabolism , Extracellular Matrix Proteins/genetics
10.
J Transl Med ; 21(1): 363, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277823

ABSTRACT

BACKGROUND: Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS: Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS: Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION: Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Cerebellar Neoplasms/genetics , Mutation , Phenotype , RNA
11.
Neuropathol Appl Neurobiol ; 49(1): e12870, 2023 02.
Article in English | MEDLINE | ID: mdl-36527335

ABSTRACT

AIMS: Pituitary neuroendocrine tumour (PitNET)/adenoma classification is based on cell lineage and requires immunopositivity for adenohypophysial hormones and/or transcription factors (TFs) steroidogenic factor 1 (SF1), T-box transcription factor TBX19 (TPIT) or pituitary-specific positive transcription factor 1 (PIT1). PitNET/adenomas lacking lineage affiliation are termed 'null cell' tumours (NCTs). NCT diagnosis may be afflicted by methodological limitations and inconsistent diagnostic approaches. Previous studies have questioned the existence of true NCTs. In this study, we explore the epigenomic identities of PitNET/adenomas lacking clear TF immunopositivity. METHODS: Seventy-four hormone-negative PitNET/adenomas were immunostained and scored for SF1, TPIT and PIT1 expression. All tumours were classified as gonadotroph, corticotroph, PIT1-positive or 'null cell'. NCTs were subjected to global DNA methylation analysis. Epigenomic profiles of NCTs were compared to reference tumours using Uniform Manifold Approximation and Projection (UMAP) plotting and methylation-based classification. RESULTS: TF immunostaining revealed definite lineage identity in 59 of 74 (79.7%) hormone-negative PitNET/adenomas. Of the remaining 15 NCTs, 13 demonstrated minimal and inconclusive nuclear SF1 or TPIT expression (5 and 8, respectively). Two NCTs were entirely immunonegative. UMAP plotting and methylation-based classification demonstrated that the epigenomes of NCTs with minimal SF1 or TPIT expression were adequately affiliated with gonadotroph or corticotroph lineages, respectively. The two immunonegative NCTs were located near the corticotroph PitNET/adenomas via UMAP, whereas the methylation classifier could not match these two cases to predefined tumour classes. CONCLUSIONS: Epigenomic analyses substantiate lineage identification based on minimal TF immunopositivity in PitNET/adenomas. This strategy dramatically decreases the incidence of NCTs and further challenges the legitimacy of NCTs as a distinct PitNET/adenoma subtype. Our study may be useful for guiding diagnostic efforts and future considerations of PitNET/adenoma classification.


Subject(s)
Adenoma , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Epigenomics , Cues , Pituitary Neoplasms/pathology , Adenoma/pathology , Transcription Factors/genetics , Hormones
12.
Neuropathol Appl Neurobiol ; : e12949, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112165

ABSTRACT

AIM: Pilocytic astrocytomas (PA) in adults are rare and may be challenging to identify based only on histomorphology. Compared to their paediatric counterparts, they are reportedly molecularly more diverse and associated with a worse prognosis. We aimed to describe the characteristics of adult PAs more precisely by comprehensively profiling a series of 79 histologically diagnosed adult cases (≥18 years). METHODS: We performed global DNA methylation profiling and DNA and RNA panel sequencing, and integrated the results with clinical data. We further compared the molecular characteristics of adult and paediatric PAs that had a significant match to one of the established PA methylation classes in the Heidelberg brain tumour classifier. RESULTS: The mean age in our cohort was 33 years, and 43% of the tumours were located supratentorially. Based on methylation profiling, only 39% of the cases received a significant match to a PA methylation class. Sixteen per cent matched a different tumour type and 45% had a Heidelberg classifier score <0.9 with an affiliation to diverse established methylation classes in t-SNE analyses. Although the KIAA1549::BRAF fusion was found in 98% of paediatric PAs, this was true for only 27% of histologically defined and 55% of adult PAs defined by methylation profiling. CONCLUSIONS: A particularly high fraction of adult tumours with histological features of PA do not match current PA methylation classes, indicating ambiguous histology and an urgent need for molecular profiling. Moreover, even in adult PAs with a match to a PA methylation class, the distribution of genetic drivers differs significantly from their paediatric counterparts (p<0.01).

13.
Neuropathol Appl Neurobiol ; 49(1): e12866, 2023 02.
Article in English | MEDLINE | ID: mdl-36519297

ABSTRACT

AIM: Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. METHODS: We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). RESULTS: The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. CONCLUSIONS: Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.


Subject(s)
Deep Learning , Humans , Artificial Intelligence , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
14.
Acta Neuropathol ; 146(3): 527-541, 2023 09.
Article in English | MEDLINE | ID: mdl-37450044

ABSTRACT

Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors manifesting in infancy. They split into four molecular types. The major three (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) all carry mutations in SMARCB1, the fourth quantitatively smaller type is characterized by SMARCA4 mutations (AT/RT-SMARCA4). Molecular characteristics of disease recurrence or metastatic spread, which go along with a particularly dismal outcome, are currently unclear. Here, we investigated tumor tissue from 26 patients affected by AT/RT to identify signatures of recurrences in comparison with matched primary tumor samples. Microscopically, AT/RT recurrences demonstrated a loss of architecture and significantly enhanced mitotic activity as compared to their related primary tumors. Based on DNA methylation profiling, primary tumor and related recurrence were grossly similar, but three out of 26 tumors belonged to a different molecular type or subtype after second surgery compared to related primary lesions. Copy number variations (CNVs) differed in six cases, showing novel gains on chromosome 1q or losses of chromosome 10 in recurrences as the most frequent alterations. To consolidate these observations, our cohort was combined with a data set of unmatched primary and recurrent AT/RT, which demonstrated chromosome 1q gain and 10 loss in 18% (n = 7) and 11% (n = 4) of the recurrences (n = 38) as compared to 7% (n = 3) and 0% (n = 0) in the primary tumors (n = 44), respectively. Similar to the observations made by DNA methylation profiling, RNA sequencing of our cohort revealed AT/RT primary tumors and matched recurrences clustering closely together. However, a number of genes showed significantly altered expression in AT/RT-SHH recurrences. Many of them are known tumor driving growth factors, involved in embryonal development and tumorigenesis, or are cell-cycle-associated. Overall, our work identifies subtle molecular changes that occur in the course of the disease and that may help define novel therapeutic targets for AT/RT recurrences.


Subject(s)
DNA Copy Number Variations , Disease Progression , Epigenesis, Genetic , Gene Expression Profiling , Recurrence , Rhabdoid Tumor , Teratoma , Child , Child, Preschool , Female , Humans , Infant , Male , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 10/genetics , Cohort Studies , Dendritic Cells , DNA Copy Number Variations/genetics , DNA Methylation , Histology , Mitosis , Rhabdoid Tumor/classification , Rhabdoid Tumor/genetics , Rhabdoid Tumor/immunology , Rhabdoid Tumor/pathology , Sequence Analysis, RNA , Teratoma/classification , Teratoma/genetics , Teratoma/immunology , Teratoma/pathology , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/genetics
15.
Acta Neuropathol ; 145(1): 97-112, 2023 01.
Article in English | MEDLINE | ID: mdl-36459208

ABSTRACT

Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Cerebellar Neoplasms/genetics , Chromosome Aberrations , Risk , Microarray Analysis
16.
Acta Neuropathol ; 145(1): 49-69, 2023 01.
Article in English | MEDLINE | ID: mdl-36437415

ABSTRACT

Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/ß-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.


Subject(s)
Central Nervous System Neoplasms , Neuroectodermal Tumors, Primitive , Child , Child, Preschool , Female , Humans , Infant , Male , Cell Cycle Proteins/genetics , Central Nervous System Neoplasms/genetics , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Neuroectodermal Tumors, Primitive/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/genetics
17.
Cell Mol Neurobiol ; 43(7): 3511-3526, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37219662

ABSTRACT

The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.


Subject(s)
Hydrocephalus , Transcription Factor AP-1 , Animals , Mice , Hydrocephalus/genetics , Mutation/genetics , Point Mutation/genetics , Signal Transduction , Transcription Factor AP-1/genetics
18.
J Pathol ; 256(4): 378-387, 2022 04.
Article in English | MEDLINE | ID: mdl-34878655

ABSTRACT

In head and neck squamous cell cancers (HNSCs) that present as metastases with an unknown primary (HNSC-CUPs), the identification of a primary tumor improves therapy options and increases patient survival. However, the currently available diagnostic methods are laborious and do not offer a sufficient detection rate. Predictive machine learning models based on DNA methylation profiles have recently emerged as a promising technique for tumor classification. We applied this technique to HNSC to develop a tool that can improve the diagnostic work-up for HNSC-CUPs. On a reference cohort of 405 primary HNSC samples, we developed four classifiers based on different machine learning models [random forest (RF), neural network (NN), elastic net penalized logistic regression (LOGREG), and support vector machine (SVM)] that predict the primary site of HNSC tumors from their DNA methylation profile. The classifiers achieved high classification accuracies (RF = 83%, NN = 88%, LOGREG = SVM = 89%) on an independent cohort of 64 HNSC metastases. Further, the NN, LOGREG, and SVM models significantly outperformed p16 status as a marker for an origin in the oropharynx. In conclusion, the DNA methylation profiles of HNSC metastases are characteristic for their primary sites, and the classifiers developed in this study, which are made available to the scientific community, can provide valuable information to guide the diagnostic work-up of HNSC-CUP. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
DNA Methylation , Head and Neck Neoplasms , Head and Neck Neoplasms/genetics , Humans , Machine Learning , Neural Networks, Computer , Squamous Cell Carcinoma of Head and Neck/genetics
19.
Clin Neuropathol ; 42(3): 112-121, 2023.
Article in English | MEDLINE | ID: mdl-36999511

ABSTRACT

We previously reported on the first neuropathological round robin trials operated together with Quality in Pathology (QuIP) GmbH in 2018 and 2019 in Germany, i.e., the trials on IDH mutational testing and MGMT promoter methylation analysis [1]. For 2020 and 2021, the spectrum of round robin trials has been expanded to cover the most commonly used assays in neuropathological institutions. In addition to IDH mutation and MGMT promoter methylation testing, there is a long tradition for 1p/19q codeletion testing relevant in the context of the diagnosis of oligodendroglioma. With the 5th edition of the World Health Organization (WHO) classification of the central nervous system tumors, additional molecular markers came into focus: TERT promoter mutation is often assessed as a molecular diagnostic criterion for IDH-wildtype glioblastoma. Moreover, several molecular diagnostic markers have been introduced for pediatric brain tumors. Here, trials on KIAA1549::BRAF fusions (common in pilocytic astrocytomas) and H3-3A mutations (in diffuse midline gliomas, H3-K27-altered and diffuse hemispheric gliomas, H3-G34-mutant) were most desired by the neuropathological community. In this update, we report on these novel round robin trials. In summary, success rates in all four trials ranged from 75 to 96%, arguing for an overall high quality level in the field of molecular neuropathological diagnostics.


Subject(s)
Biomarkers, Tumor , Chromosome Deletion , Genetic Testing , Histones , Mutation , Oncogene Proteins, Fusion , Promoter Regions, Genetic , Telomerase , Child , Humans , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Germany , Histones/genetics , Membrane Proteins/genetics , Oligodendroglioma/diagnosis , Oligodendroglioma/genetics , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics
20.
Childs Nerv Syst ; 39(2): 379-386, 2023 02.
Article in English | MEDLINE | ID: mdl-36534132

ABSTRACT

PURPOSE: Central nervous system high-grade neuroepithelial tumor with MN1 alteration (CNS-HGNET-MN1) is a rare entity defined by its DNA methylation pattern and pathologically considered to be high-grade with mixed patterns, stromal hyalinization, and with astrocytic differentiation. Our aim was to present six pediatric cases to contribute to the characterization of this group of tumors. MATERIAL AND METHODS: Six female patients aged 4 to 12 years with CNS tumors with MN1 alteration identified using genome-wide methylation arrays and/or RT-PCR were included. Clinicopathological, morphological, immunohistochemical, and molecular findings were analyzed. RESULTS: Tumor location was the parietal lobe in four and the intramedullary spinal cord in two. Two were morphologically diagnosed as ependymomas, one as gliofibroma, one as a HGNET-MN1 altered and the other two were difficult to classify. All were well-defined tumors, with a cystic component in three. Only two tumors had extensive stromal hyalinization, three had pseudopapillary formations, and four had other patterns. Multinucleated, clear, and rhabdoid cells were present. Necrosis and histiocyte clusters were also observed. Proliferative index was >10 in four. GFAP, EMA, CK, and SYN were variable, while Olig2 staining was mostly positive. Four of six patients with supratentorial tumors and complete resections were alive and tumor free after 2 to 10 years of follow-up. The two cases with medullary involvement and incomplete resections were alive and undergoing treatment 2 years after surgery. CONCLUSION: Neuroepithelial-MN1 tumors are challenging and suspicion requires molecular confirmation. Our pediatric data contribute to the knowledge for accurate diagnosis. Although further studies with a larger number of cases should be conducted in order to draw more robust conclusions regarding clinico-pathological features, here we present valuable pediatric data to increase the knowledge that may lead to the accurate management of this group of tumors.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Neoplasms, Neuroepithelial , Supratentorial Neoplasms , Child , Humans , Female , Brain Neoplasms/pathology , Central Nervous System Neoplasms/pathology , Neoplasms, Neuroepithelial/genetics , Spinal Cord/pathology , Trans-Activators , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL